論文の概要: Text as Neural Operator: Image Manipulation by Text Instruction
- arxiv url: http://arxiv.org/abs/2008.04556v4
- Date: Mon, 29 Nov 2021 16:48:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-31 11:45:11.968155
- Title: Text as Neural Operator: Image Manipulation by Text Instruction
- Title(参考訳): ニューラル演算子としてのテキスト:テキスト命令による画像操作
- Authors: Tianhao Zhang, Hung-Yu Tseng, Lu Jiang, Weilong Yang, Honglak Lee,
Irfan Essa
- Abstract要約: 本稿では、複雑なテキスト命令を用いて複数のオブジェクトで画像を編集し、オブジェクトの追加、削除、変更を可能にする設定について検討する。
タスクの入力は、(1)参照画像を含むマルチモーダルであり、(2)所望の修正を記述した自然言語の命令である。
提案モデルは,最近の3つの公開データセットの強いベースラインに対して良好に動作することを示す。
- 参考スコア(独自算出の注目度): 68.53181621741632
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, text-guided image manipulation has gained increasing
attention in the multimedia and computer vision community. The input to
conditional image generation has evolved from image-only to multimodality. In
this paper, we study a setting that allows users to edit an image with multiple
objects using complex text instructions to add, remove, or change the objects.
The inputs of the task are multimodal including (1) a reference image and (2)
an instruction in natural language that describes desired modifications to the
image. We propose a GAN-based method to tackle this problem. The key idea is to
treat text as neural operators to locally modify the image feature. We show
that the proposed model performs favorably against recent strong baselines on
three public datasets. Specifically, it generates images of greater fidelity
and semantic relevance, and when used as a image query, leads to better
retrieval performance.
- Abstract(参考訳): 近年,テキスト誘導による画像操作がマルチメディアやコンピュータビジョンのコミュニティで注目を集めている。
条件付き画像生成への入力は、画像のみからマルチモーダルへと進化してきた。
本稿では、複雑なテキスト命令を用いて複数のオブジェクトで画像を編集し、オブジェクトの追加、削除、変更を可能にする設定について検討する。
タスクの入力は、(1)参照画像と(2)画像の所望の変更を記述する自然言語による命令を含むマルチモーダルである。
我々はこの問題に取り組むためにganに基づく手法を提案する。
重要なのは、テキストをニューラル演算子として扱い、画像の特徴をローカルに修正することだ。
提案モデルは,最近の3つの公開データセットの強いベースラインに対して良好に動作することを示す。
具体的には、より忠実でセマンティックな関係のイメージを生成し、画像クエリーとして使用すると、検索性能が向上する。
関連論文リスト
- Leopard: A Vision Language Model For Text-Rich Multi-Image Tasks [62.758680527838436]
Leopardは、複数のテキストリッチイメージを含む視覚言語タスクを扱うビジョン言語モデルである。
まず、テキストリッチでマルチイメージのシナリオに合わせて、約100万の高品質なマルチモーダル命令チューニングデータをキュレートした。
第2に,視覚列長の割り当てを動的に最適化する適応型高解像度マルチイメージ符号化モジュールを開発した。
論文 参考訳(メタデータ) (2024-10-02T16:55:01Z) - TextCLIP: Text-Guided Face Image Generation And Manipulation Without
Adversarial Training [5.239585892767183]
本研究では,テキスト誘導画像生成と操作のための統合フレームワークであるTextCLIPを提案する。
提案手法は,テキスト誘導型生成タスクと操作タスクの両方において,既存の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2023-09-21T09:34:20Z) - Text-guided Image Restoration and Semantic Enhancement for Text-to-Image Person Retrieval [11.798006331912056]
テキスト・ツー・イメージ・パーソナリティ検索(TIPR)の目的は、与えられたテキスト記述に従って特定の人物画像を取得することである。
本稿では,人物画像と対応するテキスト間のきめ細かいインタラクションとアライメントを構築するための新しいTIPRフレームワークを提案する。
論文 参考訳(メタデータ) (2023-07-18T08:23:46Z) - What You See is What You Read? Improving Text-Image Alignment Evaluation [28.722369586165108]
テキスト画像の自動アライメント評価法について検討する。
まず、テキスト・ツー・イメージと画像・ツー・テキスト生成タスクから複数のデータセットにまたがるSeeeTRUEを紹介します。
質問生成モデルと視覚的質問応答モデルに基づくパイプラインを含むパイプラインと、マルチモーダル事前学習モデルの微調整によるエンドツーエンドの分類手法を用いて、アライメントを決定するための2つの自動手法について述べる。
論文 参考訳(メタデータ) (2023-05-17T17:43:38Z) - Bi-directional Training for Composed Image Retrieval via Text Prompt
Learning [46.60334745348141]
合成画像検索は、参照画像と修正テキストからなるマルチモーダルユーザクエリに基づいて、対象画像の検索を行う。
本稿では,このような逆クエリを活用し,既存の合成画像検索アーキテクチャに適用可能な双方向トレーニング手法を提案する。
2つの標準データセットに対する実験により,我々の新しい手法はベースラインBLIPモデルよりも性能が向上することが示された。
論文 参考訳(メタデータ) (2023-03-29T11:37:41Z) - Interactive Image Manipulation with Complex Text Instructions [14.329411711887115]
複雑なテキスト命令を用いてインタラクティブに画像を編集する新しい画像操作法を提案する。
ユーザーは画像操作の精度を向上できるだけでなく、拡大、縮小、オブジェクトの削除といった複雑なタスクも実現できる。
CUB(Caltech-UCSD Birds-200-2011)データセットとMicrosoft Common Objects in Context(MSCOCO)データセットの大規模な実験により、提案手法がリアルタイムにインタラクティブで柔軟で正確な画像操作を可能にすることを示す。
論文 参考訳(メタデータ) (2022-11-25T08:05:52Z) - Re-Imagen: Retrieval-Augmented Text-to-Image Generator [58.60472701831404]
検索用テキスト・ツー・イメージ・ジェネレータ(再画像)
検索用テキスト・ツー・イメージ・ジェネレータ(再画像)
論文 参考訳(メタデータ) (2022-09-29T00:57:28Z) - NewsStories: Illustrating articles with visual summaries [49.924916589209374]
我々は,3300万記事,2200万画像,100万ビデオを含む大規模マルチモーダルデータセットを提案する。
現状の画像テキストアライメント手法は、複数の画像を持つ長い物語に対して堅牢ではないことを示す。
本稿では,GoodNewsデータセット上で,ゼロショット画像セット検索において,これらの手法を10%向上させる直感的なベースラインを提案する。
論文 参考訳(メタデータ) (2022-07-26T17:34:11Z) - On Advances in Text Generation from Images Beyond Captioning: A Case
Study in Self-Rationalization [89.94078728495423]
近年のモダリティ,CLIP画像表現,言語モデルの拡張は,マルチモーダル入力によるタスクのマルチモーダル自己調整を一貫して改善していないことを示す。
画像キャプションを超えて画像やテキストからテキストを生成するために構築可能なバックボーンモデリング手法が提案されている。
論文 参考訳(メタデータ) (2022-05-24T00:52:40Z) - TediGAN: Text-Guided Diverse Face Image Generation and Manipulation [52.83401421019309]
TediGANはマルチモーダル画像生成とテキスト記述による操作のためのフレームワークである。
StyleGANインバージョンモジュールは、よく訓練されたStyleGANの潜在空間に実際の画像をマッピングする。
視覚言語的類似性は、画像とテキストを共通の埋め込み空間にマッピングすることで、テキスト画像マッチングを学ぶ。
インスタンスレベルの最適化は、操作におけるID保存のためのものだ。
論文 参考訳(メタデータ) (2020-12-06T16:20:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。