Rethinking Pseudo-LiDAR Representation
- URL: http://arxiv.org/abs/2008.04582v1
- Date: Tue, 11 Aug 2020 08:44:18 GMT
- Title: Rethinking Pseudo-LiDAR Representation
- Authors: Xinzhu Ma, Shinan Liu, Zhiyi Xia, Hongwen Zhang, Xingyu Zeng and Wanli
Ouyang
- Abstract summary: We propose an image based CNN detector named Patch-Net, which is more generalized and can be instantiated as pseudo-LiDAR based 3D detectors.
We conduct extensive experiments on the challenging KITTI dataset, where the proposed PatchNet outperforms all existing pseudo-LiDAR based counterparts.
- Score: 70.29791705160203
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The recently proposed pseudo-LiDAR based 3D detectors greatly improve the
benchmark of monocular/stereo 3D detection task. However, the underlying
mechanism remains obscure to the research community. In this paper, we perform
an in-depth investigation and observe that the efficacy of pseudo-LiDAR
representation comes from the coordinate transformation, instead of data
representation itself. Based on this observation, we design an image based CNN
detector named Patch-Net, which is more generalized and can be instantiated as
pseudo-LiDAR based 3D detectors. Moreover, the pseudo-LiDAR data in our
PatchNet is organized as the image representation, which means existing 2D CNN
designs can be easily utilized for extracting deep features from input data and
boosting 3D detection performance. We conduct extensive experiments on the
challenging KITTI dataset, where the proposed PatchNet outperforms all existing
pseudo-LiDAR based counterparts. Code has been made available at:
https://github.com/xinzhuma/patchnet.
Related papers
- Label-Guided Auxiliary Training Improves 3D Object Detector [32.96310946612949]
We propose a Label-Guided auxiliary training method for 3D object detection (LG3D)
Our proposed LG3D improves VoteNet by 2.5% and 3.1% mAP on the SUN RGB-D and ScanNetV2 datasets.
arXiv Detail & Related papers (2022-07-24T14:22:21Z) - Paint and Distill: Boosting 3D Object Detection with Semantic Passing
Network [70.53093934205057]
3D object detection task from lidar or camera sensors is essential for autonomous driving.
We propose a novel semantic passing framework, named SPNet, to boost the performance of existing lidar-based 3D detection models.
arXiv Detail & Related papers (2022-07-12T12:35:34Z) - Progressive Coordinate Transforms for Monocular 3D Object Detection [52.00071336733109]
We propose a novel and lightweight approach, dubbed em Progressive Coordinate Transforms (PCT) to facilitate learning coordinate representations.
In this paper, we propose a novel and lightweight approach, dubbed em Progressive Coordinate Transforms (PCT) to facilitate learning coordinate representations.
arXiv Detail & Related papers (2021-08-12T15:22:33Z) - LiDAR R-CNN: An Efficient and Universal 3D Object Detector [20.17906188581305]
LiDAR-based 3D detection in point cloud is essential in the perception system of autonomous driving.
We present LiDAR R-CNN, a second stage detector that can generally improve any existing 3D detector.
In particular, based on one variant of PointPillars, our method could achieve new state-of-the-art results with minor cost.
arXiv Detail & Related papers (2021-03-29T03:01:21Z) - ST3D: Self-training for Unsupervised Domain Adaptation on 3D
ObjectDetection [78.71826145162092]
We present a new domain adaptive self-training pipeline, named ST3D, for unsupervised domain adaptation on 3D object detection from point clouds.
Our ST3D achieves state-of-the-art performance on all evaluated datasets and even surpasses fully supervised results on KITTI 3D object detection benchmark.
arXiv Detail & Related papers (2021-03-09T10:51:24Z) - End-to-End Pseudo-LiDAR for Image-Based 3D Object Detection [62.34374949726333]
Pseudo-LiDAR (PL) has led to a drastic reduction in the accuracy gap between methods based on LiDAR sensors and those based on cheap stereo cameras.
PL combines state-of-the-art deep neural networks for 3D depth estimation with those for 3D object detection by converting 2D depth map outputs to 3D point cloud inputs.
We introduce a new framework based on differentiable Change of Representation (CoR) modules that allow the entire PL pipeline to be trained end-to-end.
arXiv Detail & Related papers (2020-04-07T02:18:38Z) - DSGN: Deep Stereo Geometry Network for 3D Object Detection [79.16397166985706]
There is a large performance gap between image-based and LiDAR-based 3D object detectors.
Our method, called Deep Stereo Geometry Network (DSGN), significantly reduces this gap.
For the first time, we provide a simple and effective one-stage stereo-based 3D detection pipeline.
arXiv Detail & Related papers (2020-01-10T11:44:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.