Progressive Coordinate Transforms for Monocular 3D Object Detection
- URL: http://arxiv.org/abs/2108.05793v2
- Date: Fri, 13 Aug 2021 07:42:29 GMT
- Title: Progressive Coordinate Transforms for Monocular 3D Object Detection
- Authors: Li Wang, Li Zhang, Yi Zhu, Zhi Zhang, Tong He, Mu Li, Xiangyang Xue
- Abstract summary: We propose a novel and lightweight approach, dubbed em Progressive Coordinate Transforms (PCT) to facilitate learning coordinate representations.
In this paper, we propose a novel and lightweight approach, dubbed em Progressive Coordinate Transforms (PCT) to facilitate learning coordinate representations.
- Score: 52.00071336733109
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recognizing and localizing objects in the 3D space is a crucial ability for
an AI agent to perceive its surrounding environment. While significant progress
has been achieved with expensive LiDAR point clouds, it poses a great challenge
for 3D object detection given only a monocular image. While there exist
different alternatives for tackling this problem, it is found that they are
either equipped with heavy networks to fuse RGB and depth information or
empirically ineffective to process millions of pseudo-LiDAR points. With
in-depth examination, we realize that these limitations are rooted in
inaccurate object localization. In this paper, we propose a novel and
lightweight approach, dubbed {\em Progressive Coordinate Transforms} (PCT) to
facilitate learning coordinate representations. Specifically, a localization
boosting mechanism with confidence-aware loss is introduced to progressively
refine the localization prediction. In addition, semantic image representation
is also exploited to compensate for the usage of patch proposals. Despite being
lightweight and simple, our strategy leads to superior improvements on the
KITTI and Waymo Open Dataset monocular 3D detection benchmarks. At the same
time, our proposed PCT shows great generalization to most coordinate-based 3D
detection frameworks. The code is available at:
https://github.com/amazon-research/progressive-coordinate-transforms .
Related papers
- GLACE: Global Local Accelerated Coordinate Encoding [66.87005863868181]
Scene coordinate regression methods are effective in small-scale scenes but face significant challenges in large-scale scenes.
We propose GLACE, which integrates pre-trained global and local encodings and enables SCR to scale to large scenes with only a single small-sized network.
Our method achieves state-of-the-art results on large-scale scenes with a low-map-size model.
arXiv Detail & Related papers (2024-06-06T17:59:50Z) - Embracing Single Stride 3D Object Detector with Sparse Transformer [63.179720817019096]
In LiDAR-based 3D object detection for autonomous driving, the ratio of the object size to input scene size is significantly smaller compared to 2D detection cases.
Many 3D detectors directly follow the common practice of 2D detectors, which downsample the feature maps even after quantizing the point clouds.
We propose Single-stride Sparse Transformer (SST) to maintain the original resolution from the beginning to the end of the network.
arXiv Detail & Related papers (2021-12-13T02:12:02Z) - Delving into Localization Errors for Monocular 3D Object Detection [85.77319416168362]
Estimating 3D bounding boxes from monocular images is an essential component in autonomous driving.
In this work, we quantify the impact introduced by each sub-task and find the localization error' is the vital factor in restricting monocular 3D detection.
arXiv Detail & Related papers (2021-03-30T10:38:01Z) - MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty
Propagation [4.202461384355329]
We propose MonoRUn, a novel 3D object detection framework that learns dense correspondences and geometry in a self-supervised manner.
Our proposed approach outperforms current state-of-the-art methods on KITTI benchmark.
arXiv Detail & Related papers (2021-03-23T15:03:08Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
Monocular 3D object detection aims to extract the 3D position and properties of objects from a 2D input image.
Conventional approaches sample 3D bounding boxes from the space and infer the relationship between the target object and each of them, however, the probability of effective samples is relatively small in the 3D space.
We propose to start with an initial prediction and refine it gradually towards the ground truth, with only one 3d parameter changed in each step.
This requires designing a policy which gets a reward after several steps, and thus we adopt reinforcement learning to optimize it.
arXiv Detail & Related papers (2020-08-31T17:10:48Z) - Stereo RGB and Deeper LIDAR Based Network for 3D Object Detection [40.34710686994996]
3D object detection has become an emerging task in autonomous driving scenarios.
Previous works process 3D point clouds using either projection-based or voxel-based models.
We propose the Stereo RGB and Deeper LIDAR framework which can utilize semantic and spatial information simultaneously.
arXiv Detail & Related papers (2020-06-09T11:19:24Z) - ZoomNet: Part-Aware Adaptive Zooming Neural Network for 3D Object
Detection [69.68263074432224]
We present a novel framework named ZoomNet for stereo imagery-based 3D detection.
The pipeline of ZoomNet begins with an ordinary 2D object detection model which is used to obtain pairs of left-right bounding boxes.
To further exploit the abundant texture cues in RGB images for more accurate disparity estimation, we introduce a conceptually straight-forward module -- adaptive zooming.
arXiv Detail & Related papers (2020-03-01T17:18:08Z) - SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint
Estimation [3.1542695050861544]
Estimating 3D orientation and translation of objects is essential for infrastructure-less autonomous navigation and driving.
We propose a novel 3D object detection method, named SMOKE, that combines a single keypoint estimate with regressed 3D variables.
Despite of its structural simplicity, our proposed SMOKE network outperforms all existing monocular 3D detection methods on the KITTI dataset.
arXiv Detail & Related papers (2020-02-24T08:15:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.