Low-confidence Samples Matter for Domain Adaptation
- URL: http://arxiv.org/abs/2202.02802v1
- Date: Sun, 6 Feb 2022 15:45:45 GMT
- Title: Low-confidence Samples Matter for Domain Adaptation
- Authors: Yixin Zhang, Junjie Li, Zilei Wang
- Abstract summary: Domain adaptation (DA) aims to transfer knowledge from a label-rich source domain to a related but label-scarce target domain.
We propose a novel contrastive learning method by processing low-confidence samples.
We evaluate the proposed method in both unsupervised and semi-supervised DA settings.
- Score: 47.552605279925736
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Domain adaptation (DA) aims to transfer knowledge from a label-rich source
domain to a related but label-scarce target domain. The conventional DA
strategy is to align the feature distributions of the two domains. Recently,
increasing researches have focused on self-training or other semi-supervised
algorithms to explore the data structure of the target domain. However, the
bulk of them depend largely on confident samples in order to build reliable
pseudo labels, prototypes or cluster centers. Representing the target data
structure in such a way would overlook the huge low-confidence samples,
resulting in sub-optimal transferability that is biased towards the samples
similar to the source domain. To overcome this issue, we propose a novel
contrastive learning method by processing low-confidence samples, which
encourages the model to make use of the target data structure through the
instance discrimination process. To be specific, we create positive and
negative pairs only using low-confidence samples, and then re-represent the
original features with the classifier weights rather than directly utilizing
them, which can better encode the task-specific semantic information.
Furthermore, we combine cross-domain mixup to augment the proposed contrastive
loss. Consequently, the domain gap can be well bridged through contrastive
learning of intermediate representations across domains. We evaluate the
proposed method in both unsupervised and semi-supervised DA settings, and
extensive experimental results on benchmarks reveal that our method is
effective and achieves state-of-the-art performance. The code can be found in
https://github.com/zhyx12/MixLRCo.
Related papers
- High-order Neighborhoods Know More: HyperGraph Learning Meets Source-free Unsupervised Domain Adaptation [34.08681468394247]
Source-free Unsupervised Domain Adaptation aims to classify target samples by only accessing a pre-trained source model and unlabelled target samples.
Existing methods normally exploit the pair-wise relation among target samples and attempt to discover their correlations by clustering these samples based on semantic features.
We propose a new SFDA method that exploits the high-order neighborhood relation and explicitly takes the domain shift effect into account.
arXiv Detail & Related papers (2024-05-11T05:07:43Z) - Divide and Contrast: Source-free Domain Adaptation via Adaptive
Contrastive Learning [122.62311703151215]
Divide and Contrast (DaC) aims to connect the good ends of both worlds while bypassing their limitations.
DaC divides the target data into source-like and target-specific samples, where either group of samples is treated with tailored goals.
We further align the source-like domain with the target-specific samples using a memory bank-based Maximum Mean Discrepancy (MMD) loss to reduce the distribution mismatch.
arXiv Detail & Related papers (2022-11-12T09:21:49Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
Domain Adaptation aims to transfer the knowledge learned from a labeled source domain to an unlabeled target domain whose data distributions are different.
Recently, Source-Free Domain Adaptation (SFDA) has drawn much attention, which tries to tackle domain adaptation problem without using source data.
In this work, we propose a novel framework called SFDA-DE to address SFDA task via source Distribution Estimation.
arXiv Detail & Related papers (2022-04-24T12:22:19Z) - Cross-Domain Gradient Discrepancy Minimization for Unsupervised Domain
Adaptation [22.852237073492894]
Unsupervised Domain Adaptation (UDA) aims to generalize the knowledge learned from a well-labeled source domain to an unlabeled target domain.
We propose a cross-domain discrepancy minimization (CGDM) method which explicitly minimizes the discrepancy of gradients generated by source samples and target samples.
In order to compute the gradient signal of target samples, we further obtain target pseudo labels through a clustering-based self-supervised learning.
arXiv Detail & Related papers (2021-06-08T07:35:40Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
We propose an instance affinity based criterion for source to target transfer during adaptation, called ILA-DA.
We first propose a reliable and efficient method to extract similar and dissimilar samples across source and target, and utilize a multi-sample contrastive loss to drive the domain alignment process.
We verify the effectiveness of ILA-DA by observing consistent improvements in accuracy over popular domain adaptation approaches on a variety of benchmark datasets.
arXiv Detail & Related papers (2021-04-03T01:33:14Z) - Inferring Latent Domains for Unsupervised Deep Domain Adaptation [54.963823285456925]
Unsupervised Domain Adaptation (UDA) refers to the problem of learning a model in a target domain where labeled data are not available.
This paper introduces a novel deep architecture which addresses the problem of UDA by automatically discovering latent domains in visual datasets.
We evaluate our approach on publicly available benchmarks, showing that it outperforms state-of-the-art domain adaptation methods.
arXiv Detail & Related papers (2021-03-25T14:33:33Z) - Domain Adaptation by Class Centroid Matching and Local Manifold
Self-Learning [8.316259570013813]
We propose a novel domain adaptation approach, which can thoroughly explore the data distribution structure of target domain.
We regard the samples within the same cluster in target domain as a whole rather than individuals and assigns pseudo-labels to the target cluster by class centroid matching.
An efficient iterative optimization algorithm is designed to solve the objective function of our proposal with theoretical convergence guarantee.
arXiv Detail & Related papers (2020-03-20T16:59:27Z) - Towards Fair Cross-Domain Adaptation via Generative Learning [50.76694500782927]
Domain Adaptation (DA) targets at adapting a model trained over the well-labeled source domain to the unlabeled target domain lying in different distributions.
We develop a novel Generative Few-shot Cross-domain Adaptation (GFCA) algorithm for fair cross-domain classification.
arXiv Detail & Related papers (2020-03-04T23:25:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.