Balanced Depth Completion between Dense Depth Inference and Sparse Range
Measurements via KISS-GP
- URL: http://arxiv.org/abs/2008.05158v1
- Date: Wed, 12 Aug 2020 08:07:55 GMT
- Title: Balanced Depth Completion between Dense Depth Inference and Sparse Range
Measurements via KISS-GP
- Authors: Sungho Yoon and Ayoung Kim
- Abstract summary: Estimating a dense and accurate depth map is the key requirement for autonomous driving and robotics.
Recent advances in deep learning have allowed depth estimation in full resolution from a single image.
Despite this impressive result, many deep-learning-based monocular depth estimation algorithms have failed to keep their accuracy yielding a meter-level estimation error.
- Score: 14.158132769768578
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimating a dense and accurate depth map is the key requirement for
autonomous driving and robotics. Recent advances in deep learning have allowed
depth estimation in full resolution from a single image. Despite this
impressive result, many deep-learning-based monocular depth estimation (MDE)
algorithms have failed to keep their accuracy yielding a meter-level estimation
error. In many robotics applications, accurate but sparse measurements are
readily available from Light Detection and Ranging (LiDAR). Although they are
highly accurate, the sparsity limits full resolution depth map reconstruction.
Targeting the problem of dense and accurate depth map recovery, this paper
introduces the fusion of these two modalities as a depth completion (DC)
problem by dividing the role of depth inference and depth regression. Utilizing
the state-of-the-art MDE and our Gaussian process (GP) based depth-regression
method, we propose a general solution that can flexibly work with various MDE
modules by enhancing its depth with sparse range measurements. To overcome the
major limitation of GP, we adopt Kernel Interpolation for Scalable Structured
(KISS)-GP and mitigate the computational complexity from O(N^3) to O(N). Our
experiments demonstrate that the accuracy and robustness of our method
outperform state-of-the-art unsupervised methods for sparse and biased
measurements.
Related papers
- Single Image Depth Prediction Made Better: A Multivariate Gaussian Take [163.14849753700682]
We introduce an approach that performs continuous modeling of per-pixel depth.
Our method's accuracy (named MG) is among the top on the KITTI depth-prediction benchmark leaderboard.
arXiv Detail & Related papers (2023-03-31T16:01:03Z) - Monocular Visual-Inertial Depth Estimation [66.71452943981558]
We present a visual-inertial depth estimation pipeline that integrates monocular depth estimation and visual-inertial odometry.
Our approach performs global scale and shift alignment against sparse metric depth, followed by learning-based dense alignment.
We evaluate on the TartanAir and VOID datasets, observing up to 30% reduction in RMSE with dense scale alignment.
arXiv Detail & Related papers (2023-03-21T18:47:34Z) - Non-learning Stereo-aided Depth Completion under Mis-projection via
Selective Stereo Matching [0.5067618621449753]
We propose a non-learning depth completion method for a sparse depth map captured using a light detection and ranging (LiDAR) sensor guided by a pair of stereo images.
The proposed method reduced the mean absolute error (MAE) of the depth estimation to 0.65 times and demonstrated approximately twice more accurate estimation in the long range.
arXiv Detail & Related papers (2022-10-04T07:46:56Z) - RA-Depth: Resolution Adaptive Self-Supervised Monocular Depth Estimation [27.679479140943503]
We propose a resolution adaptive self-supervised monocular depth estimation method (RA-Depth) by learning the scale invariance of the scene depth.
RA-Depth achieves state-of-the-art performance, and also exhibits a good ability of resolution adaptation.
arXiv Detail & Related papers (2022-07-25T08:49:59Z) - Non-parametric Depth Distribution Modelling based Depth Inference for
Multi-view Stereo [43.415242967722804]
Recent cost volume pyramid based deep neural networks have unlocked the potential of efficiently leveraging high-resolution images for depth inference from multi-view stereo.
In general, those approaches assume that the depth of each pixel follows a unimodal distribution.
We propose constructing the cost volume by non-parametric depth distribution modeling to handle pixels with unimodal and multi-modal distributions.
arXiv Detail & Related papers (2022-05-08T05:13:04Z) - Robust Depth Completion with Uncertainty-Driven Loss Functions [60.9237639890582]
We introduce uncertainty-driven loss functions to improve the robustness of depth completion and handle the uncertainty in depth completion.
Our method has been tested on KITTI Depth Completion Benchmark and achieved the state-of-the-art robustness performance in terms of MAE, IMAE, and IRMSE metrics.
arXiv Detail & Related papers (2021-12-15T05:22:34Z) - Direct Depth Learning Network for Stereo Matching [79.3665881702387]
A novel Direct Depth Learning Network (DDL-Net) is designed for stereo matching.
DDL-Net consists of two stages: the Coarse Depth Estimation stage and the Adaptive-Grained Depth Refinement stage.
We show that DDL-Net achieves an average improvement of 25% on the SceneFlow dataset and $12%$ on the DrivingStereo dataset.
arXiv Detail & Related papers (2020-12-10T10:33:57Z) - Efficient Depth Completion Using Learned Bases [94.0808155168311]
We propose a new global geometry constraint for depth completion.
By assuming depth maps often lay on low dimensional subspaces, a dense depth map can be approximated by a weighted sum of full-resolution principal depth bases.
arXiv Detail & Related papers (2020-12-02T11:57:37Z) - Deep Multi-view Depth Estimation with Predicted Uncertainty [11.012201499666503]
We employ a dense-optical-flow network to compute correspondences and then triangulate the point cloud to obtain an initial depth map.
To further increase the triangulation accuracy, we introduce a depth-refinement network (DRN) that optimize the initial depth map based on the image's contextual cues.
arXiv Detail & Related papers (2020-11-19T00:22:09Z) - Occlusion-Aware Depth Estimation with Adaptive Normal Constraints [85.44842683936471]
We present a new learning-based method for multi-frame depth estimation from a color video.
Our method outperforms the state-of-the-art in terms of depth estimation accuracy.
arXiv Detail & Related papers (2020-04-02T07:10:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.