Occlusion-Aware Depth Estimation with Adaptive Normal Constraints
- URL: http://arxiv.org/abs/2004.00845v4
- Date: Mon, 12 Jul 2021 16:23:55 GMT
- Title: Occlusion-Aware Depth Estimation with Adaptive Normal Constraints
- Authors: Xiaoxiao Long, Lingjie Liu, Christian Theobalt, and Wenping Wang
- Abstract summary: We present a new learning-based method for multi-frame depth estimation from a color video.
Our method outperforms the state-of-the-art in terms of depth estimation accuracy.
- Score: 85.44842683936471
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a new learning-based method for multi-frame depth estimation from
a color video, which is a fundamental problem in scene understanding, robot
navigation or handheld 3D reconstruction. While recent learning-based methods
estimate depth at high accuracy, 3D point clouds exported from their depth maps
often fail to preserve important geometric feature (e.g., corners, edges,
planes) of man-made scenes. Widely-used pixel-wise depth errors do not
specifically penalize inconsistency on these features. These inaccuracies are
particularly severe when subsequent depth reconstructions are accumulated in an
attempt to scan a full environment with man-made objects with this kind of
features. Our depth estimation algorithm therefore introduces a Combined Normal
Map (CNM) constraint, which is designed to better preserve high-curvature
features and global planar regions. In order to further improve the depth
estimation accuracy, we introduce a new occlusion-aware strategy that
aggregates initial depth predictions from multiple adjacent views into one
final depth map and one occlusion probability map for the current reference
view. Our method outperforms the state-of-the-art in terms of depth estimation
accuracy, and preserves essential geometric features of man-made indoor scenes
much better than other algorithms.
Related papers
- Self-Supervised Depth Completion Guided by 3D Perception and Geometry
Consistency [17.68427514090938]
This paper explores the utilization of 3D perceptual features and multi-view geometry consistency to devise a high-precision self-supervised depth completion method.
Experiments on benchmark datasets of NYU-Depthv2 and VOID demonstrate that the proposed model achieves the state-of-the-art depth completion performance.
arXiv Detail & Related papers (2023-12-23T14:19:56Z) - P3Depth: Monocular Depth Estimation with a Piecewise Planarity Prior [133.76192155312182]
We propose a method that learns to selectively leverage information from coplanar pixels to improve the predicted depth.
An extensive evaluation of our method shows that we set the new state of the art in supervised monocular depth estimation.
arXiv Detail & Related papers (2022-04-05T10:03:52Z) - Learning Occlusion-Aware Coarse-to-Fine Depth Map for Self-supervised
Monocular Depth Estimation [11.929584800629673]
We propose a novel network to learn an Occlusion-aware Coarse-to-Fine Depth map for self-supervised monocular depth estimation.
The proposed OCFD-Net does not only employ a discrete depth constraint for learning a coarse-level depth map, but also employ a continuous depth constraint for learning a scene depth residual.
arXiv Detail & Related papers (2022-03-21T12:43:42Z) - Depth Refinement for Improved Stereo Reconstruction [13.941756438712382]
Current techniques for depth estimation from stereoscopic images still suffer from a built-in drawback.
A simple analysis reveals that the depth error is quadratically proportional to the object's distance.
We propose a simple but effective method that uses a refinement network for depth estimation.
arXiv Detail & Related papers (2021-12-15T12:21:08Z) - Probabilistic and Geometric Depth: Detecting Objects in Perspective [78.00922683083776]
3D object detection is an important capability needed in various practical applications such as driver assistance systems.
Monocular 3D detection, as an economical solution compared to conventional settings relying on binocular vision or LiDAR, has drawn increasing attention recently but still yields unsatisfactory results.
This paper first presents a systematic study on this problem and observes that the current monocular 3D detection problem can be simplified as an instance depth estimation problem.
arXiv Detail & Related papers (2021-07-29T16:30:33Z) - Virtual Normal: Enforcing Geometric Constraints for Accurate and Robust
Depth Prediction [87.08227378010874]
We show the importance of the high-order 3D geometric constraints for depth prediction.
By designing a loss term that enforces a simple geometric constraint, we significantly improve the accuracy and robustness of monocular depth estimation.
We show state-of-the-art results of learning metric depth on NYU Depth-V2 and KITTI.
arXiv Detail & Related papers (2021-03-07T00:08:21Z) - Efficient Depth Completion Using Learned Bases [94.0808155168311]
We propose a new global geometry constraint for depth completion.
By assuming depth maps often lay on low dimensional subspaces, a dense depth map can be approximated by a weighted sum of full-resolution principal depth bases.
arXiv Detail & Related papers (2020-12-02T11:57:37Z) - Predicting Sharp and Accurate Occlusion Boundaries in Monocular Depth
Estimation Using Displacement Fields [25.3479048674598]
Current methods for depth map prediction from monocular images tend to predict smooth, poorly localized contours.
We learn to predict, given a depth map predicted by some reconstruction method, a 2D displacement field able to re-sample pixels around the occlusion boundaries into sharper reconstructions.
Our method can be applied to the output of any depth estimation method, in an end-to-end trainable fashion.
arXiv Detail & Related papers (2020-02-28T14:15:07Z) - Depth Completion Using a View-constrained Deep Prior [73.21559000917554]
Recent work has shown that the structure of convolutional neural networks (CNNs) induces a strong prior that favors natural images.
This prior, known as a deep image prior (DIP), is an effective regularizer in inverse problems such as image denoising and inpainting.
We extend the concept of the DIP to depth images. Given color images and noisy and incomplete target depth maps, we reconstruct a depth map restored by virtue of using the CNN network structure as a prior.
arXiv Detail & Related papers (2020-01-21T21:56:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.