論文の概要: REMAX: Relational Representation for Multi-Agent Exploration
- arxiv url: http://arxiv.org/abs/2008.05214v2
- Date: Sat, 5 Feb 2022 06:03:08 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-31 04:27:56.907015
- Title: REMAX: Relational Representation for Multi-Agent Exploration
- Title(参考訳): REMAX:マルチエージェント探査のための関係表現
- Authors: Heechang Ryu, Hayong Shin, Jinkyoo Park
- Abstract要約: ゲームの初期状態を生成する学習ベースの探索戦略を提案する。
本手法は,既存の探査手法よりも,MARLモデルの訓練と性能を向上させることを実証する。
- 参考スコア(独自算出の注目度): 13.363887960136102
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Training a multi-agent reinforcement learning (MARL) model with a sparse
reward is generally difficult because numerous combinations of interactions
among agents induce a certain outcome (i.e., success or failure). Earlier
studies have tried to resolve this issue by employing an intrinsic reward to
induce interactions that are helpful for learning an effective policy. However,
this approach requires extensive prior knowledge for designing an intrinsic
reward. To train the MARL model effectively without designing the intrinsic
reward, we propose a learning-based exploration strategy to generate the
initial states of a game. The proposed method adopts a variational graph
autoencoder to represent a game state such that (1) the state can be compactly
encoded to a latent representation by considering relationships among agents,
and (2) the latent representation can be used as an effective input for a
coupled surrogate model to predict an exploration score. The proposed method
then finds new latent representations that maximize the exploration scores and
decodes these representations to generate initial states from which the MARL
model starts training in the game and thus experiences novel and rewardable
states. We demonstrate that our method improves the training and performance of
the MARL model more than the existing exploration methods.
- Abstract(参考訳): 多エージェント強化学習(MARL)モデルの訓練は、エージェント間の相互作用の多数の組み合わせが特定の結果(成功または失敗)を引き起こすため、一般的には困難である。
初期の研究は、効果的な政策を学ぶのに役立つ相互作用を誘導するために内在的な報酬を用いることでこの問題を解決しようとした。
しかし、このアプローチは本質的な報酬を設計するために、幅広い事前知識を必要とする。
MARLモデルを本質的な報酬を設計することなく効果的に訓練するために,ゲームの初期状態を生成する学習ベースの探索戦略を提案する。
提案手法では,(1)エージェント間の関係を考慮し,その状態が潜伏表現にコンパクトに符号化されるようなゲーム状態を表す変分グラフオートエンコーダを採用し,(2)連結代理モデルの効果的な入力として潜伏表現を用いて探索スコアを予測する。
提案手法は,探索スコアを最大化し,これらの表現を復号化して初期状態を生成することで,MARLモデルがゲーム内でトレーニングを開始することにより,新規で報奨可能な状態を経験する。
本手法は,既存の探査手法よりも,MARLモデルの訓練と性能を向上させることを実証する。
関連論文リスト
- Imagine, Initialize, and Explore: An Effective Exploration Method in
Multi-Agent Reinforcement Learning [27.81925751697255]
複雑なシナリオにおける効率的なマルチエージェント探索法を提案する。
我々は、状態、観察、プロンプト、行動、報酬が自己回帰的に予測されるシーケンスモデリング問題として想像を定式化する。
臨界状態のエージェントを初期化することにより、IIEは潜在的に重要な未探索領域を発見する可能性を大幅に高める。
論文 参考訳(メタデータ) (2024-02-28T01:45:01Z) - MA2CL:Masked Attentive Contrastive Learning for Multi-Agent
Reinforcement Learning [128.19212716007794]
我々はtextbfMulti-textbfAgent textbfMasked textbfAttentive textbfContrastive textbfLearning (MA2CL) という効果的なフレームワークを提案する。
MA2CLは、潜伏空間におけるマスクされたエージェント観察を再構築することにより、時間的およびエージェントレベルの予測の両方の学習表現を奨励する。
提案手法は,様々なMARLアルゴリズムの性能とサンプル効率を大幅に向上させ,様々な視覚的,状態的シナリオにおいて,他の手法よりも優れる。
論文 参考訳(メタデータ) (2023-06-03T05:32:19Z) - MERMAIDE: Learning to Align Learners using Model-Based Meta-Learning [62.065503126104126]
本研究では,先見のつかない学習エージェントの報酬を効率よく効果的に介入し,望ましい結果を導き出す方法について検討する。
これはオークションや課税のような現実世界の多くの設定に関係しており、プリンシパルは学習行動や実際の人々の報酬を知らないかもしれない。
モデルに基づくメタ学習フレームワークであるMERMAIDEを導入し,配布外エージェントに迅速に適応できるプリンシパルを訓練する。
論文 参考訳(メタデータ) (2023-04-10T15:44:50Z) - Embedding Contextual Information through Reward Shaping in Multi-Agent
Learning: A Case Study from Google Football [0.0]
我々は、報酬関数に文脈情報を埋め込むことで、新たな報酬形成手法を作成する。
Google Research Football (GRF) 環境でこれを実証する。
実験結果から,報奨信号の少ない環境下でのトレーニングエージェントのための最新のMARLアルゴリズムに,報奨形法が有用であることが確認された。
論文 参考訳(メタデータ) (2023-03-25T10:21:13Z) - Strangeness-driven Exploration in Multi-Agent Reinforcement Learning [0.0]
我々は,任意の集中型トレーニングと分散実行(CTDE)に基づくMARLアルゴリズムに容易に組み込むことのできる,奇異性のある新たな探索手法を提案する。
探索ボーナスは奇異性から得られ,提案手法はMARLタスクでよく見られる遷移の影響を受けない。
論文 参考訳(メタデータ) (2022-12-27T11:08:49Z) - Reward Uncertainty for Exploration in Preference-based Reinforcement
Learning [88.34958680436552]
好みに基づく強化学習アルゴリズムを対象とした探索手法を提案する。
我々の基本的な考え方は、学習した報酬に基づいて、斬新さを測定することによって、本質的な報酬を設計することである。
実験により、学習報酬の不確実性からの探索ボーナスは、好みに基づくRLアルゴリズムのフィードバック効率とサンプル効率の両方を改善することが示された。
論文 参考訳(メタデータ) (2022-05-24T23:22:10Z) - Imaginary Hindsight Experience Replay: Curious Model-based Learning for
Sparse Reward Tasks [9.078290260836706]
複雑な報酬工学の必要性を先導するスパース・リワードタスクに適したモデルベース手法を提案する。
このアプローチはImaginary Hindsight Experience Replayと呼ばれ、想像データをポリシー更新に組み込むことで、現実世界のインタラクションを最小化する。
評価を行うと、この手法はOpenAI Gym Fetch Roboticsのベンチマークにおける最先端のモデルフリー手法と比較して、平均的なデータ効率が桁違いに向上する。
論文 参考訳(メタデータ) (2021-10-05T23:38:31Z) - Exploratory State Representation Learning [63.942632088208505]
本稿では,XSRL(eXploratory State Representation Learning)と呼ばれる新しい手法を提案する。
一方、コンパクトな状態表現と、その表現から不可解な情報を除去するために使用される状態遷移推定器を共同で学習する。
一方、逆モデルを継続的に訓練し、このモデルの予測誤差に$k$-stepの学習促進ボーナスを加え、発見ポリシーの目的を形成する。
論文 参考訳(メタデータ) (2021-09-28T10:11:07Z) - MURAL: Meta-Learning Uncertainty-Aware Rewards for Outcome-Driven
Reinforcement Learning [65.52675802289775]
本研究では,不確かさを意識した分類器が,強化学習の難しさを解消できることを示す。
正規化最大度(NML)分布の計算法を提案する。
得られたアルゴリズムは、カウントベースの探索法と、報酬関数を学習するための先行アルゴリズムの両方に多くの興味深い関係を持つことを示す。
論文 参考訳(メタデータ) (2021-07-15T08:19:57Z) - Model-free Representation Learning and Exploration in Low-rank MDPs [64.72023662543363]
低位mdpに対して,最初のモデルフリー表現学習アルゴリズムを提案する。
主要なアルゴリズムの貢献は新しいミニマックス表現の学習の目的です。
結果は複雑な環境にスケールする一般的な関数近似を収容できます。
論文 参考訳(メタデータ) (2021-02-14T00:06:54Z) - A New Framework for Query Efficient Active Imitation Learning [5.167794607251493]
彼の好みと目的に基づいて、報酬と安全でない状態を知っている人間の専門家がいますが、人間の専門家に問い合わせるのは高価です。
本稿では,ユーザの報酬関数のモデルと効率的なクエリを積極的かつインタラクティブに学習する,模倣学習(IL)アルゴリズムを提案する。
提案手法は、状態ベース2次元ナビゲーションタスク、ロボット制御タスク、画像ベースビデオゲームに基づいて、シミュレーションされた人間を用いて評価する。
論文 参考訳(メタデータ) (2019-12-30T18:12:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。