論文の概要: Learning to Learn from Mistakes: Robust Optimization for Adversarial
Noise
- arxiv url: http://arxiv.org/abs/2008.05247v1
- Date: Wed, 12 Aug 2020 11:44:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-31 04:26:51.885142
- Title: Learning to Learn from Mistakes: Robust Optimization for Adversarial
Noise
- Title(参考訳): 誤りから学ぶための学習: 敵対的雑音に対するロバスト最適化
- Authors: Alex Serban, Erik Poll, Joost Visser
- Abstract要約: 我々はメタ最適化器を訓練し、敵対的な例を使ってモデルを堅牢に最適化することを学び、学習した知識を新しいモデルに転送することができる。
実験の結果、メタ最適化は異なるアーキテクチャやデータセット間で一貫性があることが示され、敵の脆弱性を自動的にパッチすることができることが示唆された。
- 参考スコア(独自算出の注目度): 1.976652238476722
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sensitivity to adversarial noise hinders deployment of machine learning
algorithms in security-critical applications. Although many adversarial
defenses have been proposed, robustness to adversarial noise remains an open
problem. The most compelling defense, adversarial training, requires a
substantial increase in processing time and it has been shown to overfit on the
training data. In this paper, we aim to overcome these limitations by training
robust models in low data regimes and transfer adversarial knowledge between
different models. We train a meta-optimizer which learns to robustly optimize a
model using adversarial examples and is able to transfer the knowledge learned
to new models, without the need to generate new adversarial examples.
Experimental results show the meta-optimizer is consistent across different
architectures and data sets, suggesting it is possible to automatically patch
adversarial vulnerabilities.
- Abstract(参考訳): 敵対的ノイズに対する感受性は、セキュリティクリティカルなアプリケーションにおける機械学習アルゴリズムの展開を妨げる。
多くの敵の防御策が提案されているが、敵の雑音に対する堅牢性は依然として未解決の問題である。
最も説得力のある防御、敵の訓練は、処理時間を大幅に増加させ、トレーニングデータに過度に適合することが示されている。
本稿では,低データ環境におけるロバストモデルを訓練し,異なるモデル間での敵知識を伝達することにより,これらの制約を克服することを目的とする。
我々は,敵の例を用いてモデルを堅牢に最適化することを学び,新たな敵の例を生成することなく,新たなモデルに学習した知識を伝達するメタ最適化を訓練する。
実験の結果、メタ最適化は異なるアーキテクチャやデータセット間で一貫性があることを示し、敵の脆弱性を自動的にパッチできることを示している。
関連論文リスト
- MOREL: Enhancing Adversarial Robustness through Multi-Objective Representation Learning [1.534667887016089]
ディープニューラルネットワーク(DNN)は、わずかに敵対的な摂動に対して脆弱である。
トレーニング中の強力な特徴表現学習は、元のモデルの堅牢性を大幅に向上させることができることを示す。
本稿では,多目的特徴表現学習手法であるMORELを提案する。
論文 参考訳(メタデータ) (2024-10-02T16:05:03Z) - Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
アドリラルロバスト性は、ニューラルネットワークをエンコードする難しい性質として伝統的に信じられてきた。
データを使わずに敵の堅牢性を実現するために,スケーラブルでモデルに依存しないソリューションを開発した。
論文 参考訳(メタデータ) (2024-07-26T10:49:14Z) - Robustness-Congruent Adversarial Training for Secure Machine Learning
Model Updates [13.911586916369108]
機械学習モデルにおける誤分類は、敵の例に対して堅牢性に影響を及ぼす可能性があることを示す。
この問題に対処するために,ロバストネス・コングロレント・逆行訓練という手法を提案する。
我々のアルゴリズムと、より一般的には、非回帰的制約で学習することは、一貫した推定器を訓練するための理論的に基底的なフレームワークを提供することを示す。
論文 参考訳(メタデータ) (2024-02-27T10:37:13Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
トレーニングデータに制限がある現実的なシナリオでは、データ内の多くの予測信号は、データ取得のバイアスからより多く得る。
我々は,相互情報制約の下で,より広い範囲の摂動をカバーできる敵の脅威モデルを考える。
そこで本研究では,その目的を実現するためのオートエンコーダベーストレーニングと,提案したハイブリッド識別世代学習を促進するための実用的なエンコーダ設計を提案する。
論文 参考訳(メタデータ) (2023-03-24T16:03:21Z) - Self-Ensemble Adversarial Training for Improved Robustness [14.244311026737666]
敵の訓練は、あらゆる種類の防衛方法において、様々な敵の攻撃に対する最強の戦略である。
最近の研究は主に新しい損失関数や正規化器の開発に重点を置いており、重み空間の特異な最適点を見つけようとしている。
我々は,歴史モデルの重みを平均化し,頑健な分類器を生成するための,単純だが強力なemphSelf-Ensemble Adversarial Training (SEAT)法を考案した。
論文 参考訳(メタデータ) (2022-03-18T01:12:18Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
モデル非依存型メタアタック(MAMA)アプローチにより,より強力な攻撃アルゴリズムを自動検出する。
本手法は、繰り返しニューラルネットワークによってパラメータ化された逆攻撃を学習する。
本研究では,未知の防御を攻撃した場合の学習能力を向上させるために,モデルに依存しない訓練アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-10-13T13:54:24Z) - Stylized Adversarial Defense [105.88250594033053]
逆行訓練は摂動パターンを生成し、モデルを堅牢化するためのトレーニングセットにそれらを含む。
我々は、より強力な敵を作るために、機能空間から追加情報を活用することを提案する。
我々の対人訓練アプローチは、最先端の防御と比べて強い堅牢性を示している。
論文 参考訳(メタデータ) (2020-07-29T08:38:10Z) - Opportunities and Challenges in Deep Learning Adversarial Robustness: A
Survey [1.8782750537161614]
本稿では,機械学習アルゴリズムの安全性を保証するために,強靭に訓練されたアルゴリズムを実装するための戦略について検討する。
我々は、敵の攻撃と防衛を分類し、ロバスト最適化問題をmin-max設定で定式化し、それを3つのサブカテゴリに分類する。
論文 参考訳(メタデータ) (2020-07-01T21:00:32Z) - Learning to Generate Noise for Multi-Attack Robustness [126.23656251512762]
対人学習は、対人摂動に対する既存の方法の感受性を回避できる手法の1つとして登場した。
安全クリティカルなアプリケーションでは、攻撃者は様々な敵を採用してシステムを騙すことができるため、これらの手法は極端に便利である。
本稿では,複数種類の攻撃に対するモデルの堅牢性を改善するために,ノイズ発生を明示的に学習するメタラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-22T10:44:05Z) - Improved Adversarial Training via Learned Optimizer [101.38877975769198]
対戦型トレーニングモデルの堅牢性を改善するための枠組みを提案する。
共学習のパラメータモデルの重み付けにより、提案するフレームワークは、更新方向に対するロバスト性とステップの適応性を一貫して改善する。
論文 参考訳(メタデータ) (2020-04-25T20:15:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。