Learning to Learn from Mistakes: Robust Optimization for Adversarial
Noise
- URL: http://arxiv.org/abs/2008.05247v1
- Date: Wed, 12 Aug 2020 11:44:01 GMT
- Title: Learning to Learn from Mistakes: Robust Optimization for Adversarial
Noise
- Authors: Alex Serban, Erik Poll, Joost Visser
- Abstract summary: We train a meta-optimizer which learns to robustly optimize a model using adversarial examples and is able to transfer the knowledge learned to new models.
Experimental results show the meta-optimizer is consistent across different architectures and data sets, suggesting it is possible to automatically patch adversarial vulnerabilities.
- Score: 1.976652238476722
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sensitivity to adversarial noise hinders deployment of machine learning
algorithms in security-critical applications. Although many adversarial
defenses have been proposed, robustness to adversarial noise remains an open
problem. The most compelling defense, adversarial training, requires a
substantial increase in processing time and it has been shown to overfit on the
training data. In this paper, we aim to overcome these limitations by training
robust models in low data regimes and transfer adversarial knowledge between
different models. We train a meta-optimizer which learns to robustly optimize a
model using adversarial examples and is able to transfer the knowledge learned
to new models, without the need to generate new adversarial examples.
Experimental results show the meta-optimizer is consistent across different
architectures and data sets, suggesting it is possible to automatically patch
adversarial vulnerabilities.
Related papers
- MOREL: Enhancing Adversarial Robustness through Multi-Objective Representation Learning [1.534667887016089]
deep neural networks (DNNs) are vulnerable to slight adversarial perturbations.
We show that strong feature representation learning during training can significantly enhance the original model's robustness.
We propose MOREL, a multi-objective feature representation learning approach, encouraging classification models to produce similar features for inputs within the same class, despite perturbations.
arXiv Detail & Related papers (2024-10-02T16:05:03Z) - Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
Adrial robustness has been conventionally believed as a challenging property to encode for neural networks.
We develop a scalable and model-agnostic solution to achieve adversarial robustness without using any data.
arXiv Detail & Related papers (2024-07-26T10:49:14Z) - Robustness-Congruent Adversarial Training for Secure Machine Learning
Model Updates [13.911586916369108]
We show that misclassifications in machine-learning models can affect robustness to adversarial examples.
We propose a technique, named robustness-congruent adversarial training, to address this issue.
We show that our algorithm and, more generally, learning with non-regression constraints, provides a theoretically-grounded framework to train consistent estimators.
arXiv Detail & Related papers (2024-02-27T10:37:13Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - Self-Ensemble Adversarial Training for Improved Robustness [14.244311026737666]
Adversarial training is the strongest strategy against various adversarial attacks among all sorts of defense methods.
Recent works mainly focus on developing new loss functions or regularizers, attempting to find the unique optimal point in the weight space.
We devise a simple but powerful emphSelf-Ensemble Adversarial Training (SEAT) method for yielding a robust classifier by averaging weights of history models.
arXiv Detail & Related papers (2022-03-18T01:12:18Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
We propose a Model-Agnostic Meta-Attack (MAMA) approach to discover stronger attack algorithms automatically.
Our method learns the in adversarial attacks parameterized by a recurrent neural network.
We develop a model-agnostic training algorithm to improve the ability of the learned when attacking unseen defenses.
arXiv Detail & Related papers (2021-10-13T13:54:24Z) - Stylized Adversarial Defense [105.88250594033053]
adversarial training creates perturbation patterns and includes them in the training set to robustify the model.
We propose to exploit additional information from the feature space to craft stronger adversaries.
Our adversarial training approach demonstrates strong robustness compared to state-of-the-art defenses.
arXiv Detail & Related papers (2020-07-29T08:38:10Z) - Opportunities and Challenges in Deep Learning Adversarial Robustness: A
Survey [1.8782750537161614]
This paper studies strategies to implement adversary robustly trained algorithms towards guaranteeing safety in machine learning algorithms.
We provide a taxonomy to classify adversarial attacks and defenses, formulate the Robust Optimization problem in a min-max setting, and divide it into 3 subcategories, namely: Adversarial (re)Training, Regularization Approach, and Certified Defenses.
arXiv Detail & Related papers (2020-07-01T21:00:32Z) - Learning to Generate Noise for Multi-Attack Robustness [126.23656251512762]
Adversarial learning has emerged as one of the successful techniques to circumvent the susceptibility of existing methods against adversarial perturbations.
In safety-critical applications, this makes these methods extraneous as the attacker can adopt diverse adversaries to deceive the system.
We propose a novel meta-learning framework that explicitly learns to generate noise to improve the model's robustness against multiple types of attacks.
arXiv Detail & Related papers (2020-06-22T10:44:05Z) - Improved Adversarial Training via Learned Optimizer [101.38877975769198]
We propose a framework to improve the robustness of adversarial training models.
By co-training's parameters model's weights, the proposed framework consistently improves robustness and steps adaptively for update directions.
arXiv Detail & Related papers (2020-04-25T20:15:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.