Enhancing Fiber Orientation Distributions using convolutional Neural
Networks
- URL: http://arxiv.org/abs/2008.05409v2
- Date: Thu, 17 Dec 2020 18:41:44 GMT
- Title: Enhancing Fiber Orientation Distributions using convolutional Neural
Networks
- Authors: Oeslle Lucena, Sjoerd B. Vos, Vejay Vakharia, John Duncan, Keyoumars
Ashkan, Rachel Sparks, Sebastien Ourselin
- Abstract summary: We learn improved FODs for commercially acquired MRI.
We evaluate patch-based 3D convolutional neural networks (CNNs)
Our approach may enable robust CSD model estimation on single-shell dMRI acquisition protocols.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate local fiber orientation distribution (FOD) modeling based on
diffusion magnetic resonance imaging (dMRI) capable of resolving complex fiber
configurations benefits from specific acquisition protocols that sample a high
number of gradient directions (b-vecs), a high maximum b-value(b-vals), and
multiple b-values (multi-shell). However, acquisition time is limited in a
clinical setting and commercial scanners may not provide such dMRI sequences.
Therefore, dMRI is often acquired as single-shell (single b-value). In this
work, we learn improved FODs for commercially acquired MRI. We evaluate
patch-based 3D convolutional neural networks (CNNs)on their ability to regress
multi-shell FOD representations from single-shell representations, where the
representation is a spherical harmonics obtained from constrained spherical
deconvolution (CSD) to model FODs. We evaluate U-Net and HighResNet 3D CNN
architectures on data from the Human Connectome Project and an in-house
dataset. We evaluate how well each CNN model can resolve local fiber
orientation 1) when training and testing on datasets with the same dMRI
acquisition protocol; 2) when testing on a dataset with a different dMRI
acquisition protocol than used to train the CNN models; and 3) when testing on
a dataset with a fewer number of gradient directions than used to train the CNN
models. Our approach may enable robust CSD model estimation on single-shell
dMRI acquisition protocols with few gradient directions, reducing acquisition
times, facilitating translation of improved FOD estimation to time-limited
clinical environments.
Related papers
- SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
This study proposes a novel Siamese Dual-Resolution Transformer (SDR-Former) framework for liver lesion classification.
The proposed framework has been validated through comprehensive experiments on two clinical datasets.
To support the scientific community, we are releasing our extensive multi-phase MR dataset for liver lesion analysis to the public.
arXiv Detail & Related papers (2024-02-27T06:32:56Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
Resting-state MRI functional (rs-fMRI) is increasingly employed in multi-site research to aid neurological disorder analysis.
Many methods have been proposed to reduce fMRI heterogeneity between source and target domains.
But acquiring source data is challenging due to concerns and/or data storage burdens in multi-site studies.
We design a source-free collaborative domain adaptation framework for fMRI analysis, where only a pretrained source model and unlabeled target data are accessible.
arXiv Detail & Related papers (2023-08-24T01:30:18Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
We propose a new method called Convolutional Monge Mapping Normalization (CMMN)
CMMN consists in filtering the signals in order to adapt their power spectrum density (PSD) to a Wasserstein barycenter estimated on training data.
Numerical experiments on sleep EEG data show that CMMN leads to significant and consistent performance gains independent from the neural network architecture.
arXiv Detail & Related papers (2023-05-30T08:24:01Z) - Bayesian Neural Network Language Modeling for Speech Recognition [59.681758762712754]
State-of-the-art neural network language models (NNLMs) represented by long short term memory recurrent neural networks (LSTM-RNNs) and Transformers are becoming highly complex.
In this paper, an overarching full Bayesian learning framework is proposed to account for the underlying uncertainty in LSTM-RNN and Transformer LMs.
arXiv Detail & Related papers (2022-08-28T17:50:19Z) - GLEAM: Greedy Learning for Large-Scale Accelerated MRI Reconstruction [50.248694764703714]
Unrolled neural networks have recently achieved state-of-the-art accelerated MRI reconstruction.
These networks unroll iterative optimization algorithms by alternating between physics-based consistency and neural-network based regularization.
We propose Greedy LEarning for Accelerated MRI reconstruction, an efficient training strategy for high-dimensional imaging settings.
arXiv Detail & Related papers (2022-07-18T06:01:29Z) - How can spherical CNNs benefit ML-based diffusion MRI parameter
estimation? [2.4417196796959906]
Spherical convolutional neural networks (S-CNN) offer distinct advantages over conventional fully-connected networks (FCN)
Current clinical practice commonly acquires dMRI data consisting of only 6 diffusion weighted images (DWIs)
arXiv Detail & Related papers (2022-07-01T17:49:26Z) - Highly Accurate FMRI ADHD Classification using time distributed multi
modal 3D CNNs [0.0]
This work proposes an algorithm for fMRI data analysis for the classification of ADHD disorders.
By leveraging a 3D-GAN it would be possible to use deepfake data to enhance the accuracy of 3D CNN classification of brain disorders.
arXiv Detail & Related papers (2022-05-24T11:39:11Z) - CNN-LSTM Based Multimodal MRI and Clinical Data Fusion for Predicting
Functional Outcome in Stroke Patients [1.5250925845050138]
Clinical outcome prediction plays an important role in stroke patient management.
From a machine learning point-of-view, one of the main challenges is dealing with heterogeneous data.
In this paper a multimodal convolutional neural network - long short-term memory (CNN-LSTM) based ensemble model is proposed.
arXiv Detail & Related papers (2022-05-11T14:46:01Z) - Three-Dimensional Embedded Attentive RNN (3D-EAR) Segmentor for Left
Ventricle Delineation from Myocardial Velocity Mapping [1.8653386811342048]
We propose a novel fully automated framework incorporating a 3D-UNet backbone architecture with Embedded multichannel Attention mechanism and LSTM based Recurrent neural networks (RNN) for the MVM-CMR datasets.
By comparing the baseline model of 3D-UNet and ablation studies with and without embedded attentive LSTM modules and various loss functions, we can demonstrate that the proposed model has outperformed the state-of-the-art baseline models with significant improvement.
arXiv Detail & Related papers (2021-04-26T11:04:43Z) - Accurate and Efficient Intracranial Hemorrhage Detection and Subtype
Classification in 3D CT Scans with Convolutional and Long Short-Term Memory
Neural Networks [20.4701676109641]
We present our system for the RSNA Intracranial Hemorrhage Detection challenge.
The proposed system is based on a lightweight deep neural network architecture composed of a convolutional neural network (CNN)
We report a weighted mean log loss of 0.04989 on the final test set, which places us in the top 30 ranking (2%) from a total of 1345 participants.
arXiv Detail & Related papers (2020-08-01T17:28:25Z) - M2Net: Multi-modal Multi-channel Network for Overall Survival Time
Prediction of Brain Tumor Patients [151.4352001822956]
Early and accurate prediction of overall survival (OS) time can help to obtain better treatment planning for brain tumor patients.
Existing prediction methods rely on radiomic features at the local lesion area of a magnetic resonance (MR) volume.
We propose an end-to-end OS time prediction model; namely, Multi-modal Multi-channel Network (M2Net)
arXiv Detail & Related papers (2020-06-01T05:21:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.