Highly Accurate FMRI ADHD Classification using time distributed multi
modal 3D CNNs
- URL: http://arxiv.org/abs/2205.11993v1
- Date: Tue, 24 May 2022 11:39:11 GMT
- Title: Highly Accurate FMRI ADHD Classification using time distributed multi
modal 3D CNNs
- Authors: Christopher Sims
- Abstract summary: This work proposes an algorithm for fMRI data analysis for the classification of ADHD disorders.
By leveraging a 3D-GAN it would be possible to use deepfake data to enhance the accuracy of 3D CNN classification of brain disorders.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work proposes an algorithm for fMRI data analysis for the classification
of ADHD disorders. There have been several breakthroughs in the analysis of
fMRI via 3D convolutional neural networks (CNNs). With these new techniques it
is possible to preserve the 3D spatial data of fMRI data. Additionally there
have been recent advances in the use of 3D generative adversarial neural
networks (GANs) for the generation of normal MRI data. This work utilizes multi
modal 3D CNNs with data augmentation from 3D GAN for ADHD prediction from fMRI.
By leveraging a 3D-GAN it would be possible to use deepfake data to enhance the
accuracy of 3D CNN classification of brain disorders. A comparison will be made
between a time distributed single modal 3D CNN model for classification and the
modified multi modal model with MRI data as well.
Related papers
- fMRI-3D: A Comprehensive Dataset for Enhancing fMRI-based 3D Reconstruction [50.534007259536715]
We present the fMRI-3D dataset, which includes data from 15 participants and showcases a total of 4768 3D objects.
We propose MinD-3D, a novel framework designed to decode 3D visual information from fMRI signals.
arXiv Detail & Related papers (2024-09-17T16:13:59Z) - Efficient Slice Anomaly Detection Network for 3D Brain MRI Volume [2.3633885460047765]
Current anomaly detection methods excel with benchmark industrial data but struggle with medical data due to varying definitions of 'normal' and 'abnormal'
We propose a framework called Simple Slice-based Network (SimpleSliceNet), which utilizes a model pre-trained on ImageNet and fine-tuned on a separate MRI dataset as a 2D slice feature extractor to reduce computational cost.
arXiv Detail & Related papers (2024-08-28T17:20:56Z) - NeRF-GAN Distillation for Efficient 3D-Aware Generation with
Convolutions [97.27105725738016]
integration of Neural Radiance Fields (NeRFs) and generative models, such as Generative Adversarial Networks (GANs) has transformed 3D-aware generation from single-view images.
We propose a simple and effective method, based on re-using the well-disentangled latent space of a pre-trained NeRF-GAN in a pose-conditioned convolutional network to directly generate 3D-consistent images corresponding to the underlying 3D representations.
arXiv Detail & Related papers (2023-03-22T18:59:48Z) - Video4MRI: An Empirical Study on Brain Magnetic Resonance Image
Analytics with CNN-based Video Classification Frameworks [60.42012344842292]
3D CNN-based models dominate the field of magnetic resonance image (MRI) analytics.
In this paper, four datasets of Alzheimer's and Parkinson's disease recognition are utilized in experiments.
In terms of efficiency, the video framework performs better than 3D-CNN models by 5% - 11% with 50% - 66% less trainable parameters.
arXiv Detail & Related papers (2023-02-24T15:26:31Z) - Decomposing 3D Neuroimaging into 2+1D Processing for Schizophrenia
Recognition [25.80846093248797]
We propose to process the 3D data by a 2+1D framework so that we can exploit the powerful deep 2D Convolutional Neural Network (CNN) networks pre-trained on the huge ImageNet dataset for 3D neuroimaging recognition.
Specifically, 3D volumes of Magnetic Resonance Imaging (MRI) metrics are decomposed to 2D slices according to neighboring voxel positions.
Global pooling is applied to remove redundant information as the activation patterns are sparsely distributed over feature maps.
Channel-wise and slice-wise convolutions are proposed to aggregate the contextual information in the third dimension unprocessed by the 2D CNN model.
arXiv Detail & Related papers (2022-11-21T15:22:59Z) - Evaluation of augmentation methods in classifying autism spectrum
disorders from fMRI data with 3D convolutional neural networks [0.0]
We use resting state derivatives from 1,112 subjects in ABIDE preprocessed to train a 3D convolutional neural network (CNN) to perform the classification.
Our results show that augmentation only provide minor improvements to the test accuracy.
arXiv Detail & Related papers (2021-10-20T11:03:17Z) - 3-Dimensional Deep Learning with Spatial Erasing for Unsupervised
Anomaly Segmentation in Brain MRI [55.97060983868787]
We investigate whether using increased spatial context by using MRI volumes combined with spatial erasing leads to improved unsupervised anomaly segmentation performance.
We compare 2D variational autoencoder (VAE) to their 3D counterpart, propose 3D input erasing, and systemically study the impact of the data set size on the performance.
Our best performing 3D VAE with input erasing leads to an average DICE score of 31.40% compared to 25.76% for the 2D VAE.
arXiv Detail & Related papers (2021-09-14T09:17:27Z) - Rotation-Equivariant Deep Learning for Diffusion MRI [49.321304988619865]
Convolutional networks are successful, but they have recently been outperformed by new neural networks that are equivariant under rotations and translations.
Here we generalize them to 6D diffusion MRI data, ensuring joint equivariance under 3D roto-translations in image space and the matching 3D rotations in $q$-space.
Our proposed neural networks yield better results and require fewer scans for training compared to non-rotation-equivariant deep learning.
arXiv Detail & Related papers (2021-02-13T15:18:34Z) - Improved Brain Age Estimation with Slice-based Set Networks [18.272915375351914]
We propose a new architecture for BrainAGE prediction.
The proposed architecture works by encoding each 2D slice in an MRI with a deep 2D-CNN model.
Next, it combines the information from these 2D-slice encodings using set networks or permutation invariant layers.
Experiments on the BrainAGE prediction problem, using the UK Biobank dataset, showed that the model with the permutation invariant layers trains faster and provides better predictions compared to other state-of-the-art approaches.
arXiv Detail & Related papers (2021-02-08T18:54:15Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
We propose a differentiable neural architecture search (DNAS) framework to automatically search for the 3D DL models for 3D chest CT scans classification.
We also exploit the Class Activation Mapping (CAM) technique on our models to provide the interpretability of the results.
arXiv Detail & Related papers (2021-01-14T03:45:01Z) - Enhancing Fiber Orientation Distributions using convolutional Neural
Networks [0.0]
We learn improved FODs for commercially acquired MRI.
We evaluate patch-based 3D convolutional neural networks (CNNs)
Our approach may enable robust CSD model estimation on single-shell dMRI acquisition protocols.
arXiv Detail & Related papers (2020-08-12T16:06:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.