Stable Low-rank Tensor Decomposition for Compression of Convolutional
Neural Network
- URL: http://arxiv.org/abs/2008.05441v1
- Date: Wed, 12 Aug 2020 17:10:12 GMT
- Title: Stable Low-rank Tensor Decomposition for Compression of Convolutional
Neural Network
- Authors: Anh-Huy Phan, Konstantin Sobolev, Konstantin Sozykin, Dmitry Ermilov,
Julia Gusak, Petr Tichavsky, Valeriy Glukhov, Ivan Oseledets, and Andrzej
Cichocki
- Abstract summary: This paper is the first study on degeneracy in the tensor decomposition of convolutional kernels.
We present a novel method, which can stabilize the low-rank approximation of convolutional kernels and ensure efficient compression.
We evaluate our approach on popular CNN architectures for image classification and show that our method results in much lower accuracy degradation and provides consistent performance.
- Score: 19.717842489217684
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most state of the art deep neural networks are overparameterized and exhibit
a high computational cost. A straightforward approach to this problem is to
replace convolutional kernels with its low-rank tensor approximations, whereas
the Canonical Polyadic tensor Decomposition is one of the most suited models.
However, fitting the convolutional tensors by numerical optimization algorithms
often encounters diverging components, i.e., extremely large rank-one tensors
but canceling each other. Such degeneracy often causes the non-interpretable
result and numerical instability for the neural network fine-tuning. This paper
is the first study on degeneracy in the tensor decomposition of convolutional
kernels. We present a novel method, which can stabilize the low-rank
approximation of convolutional kernels and ensure efficient compression while
preserving the high-quality performance of the neural networks. We evaluate our
approach on popular CNN architectures for image classification and show that
our method results in much lower accuracy degradation and provides consistent
performance.
Related papers
- Convolutional Neural Network Compression Based on Low-Rank Decomposition [3.3295360710329738]
This paper proposes a model compression method that integrates Variational Bayesian Matrix Factorization.
VBMF is employed to estimate the rank of the weight tensor at each layer.
Experimental results show that for both high and low compression ratios, our compression model exhibits advanced performance.
arXiv Detail & Related papers (2024-08-29T06:40:34Z) - Efficient Bound of Lipschitz Constant for Convolutional Layers by Gram
Iteration [122.51142131506639]
We introduce a precise, fast, and differentiable upper bound for the spectral norm of convolutional layers using circulant matrix theory.
We show through a comprehensive set of experiments that our approach outperforms other state-of-the-art methods in terms of precision, computational cost, and scalability.
It proves highly effective for the Lipschitz regularization of convolutional neural networks, with competitive results against concurrent approaches.
arXiv Detail & Related papers (2023-05-25T15:32:21Z) - Tensor Decomposition for Model Reduction in Neural Networks: A Review [13.96938227911258]
Modern neural networks have revolutionized the fields of computer vision (CV) and Natural Language Processing (NLP)
They are widely used for solving complex CV tasks and NLP tasks such as image classification, image generation, and machine translation.
This paper reviews six tensor decomposition methods and illustrates their ability to compress model parameters.
arXiv Detail & Related papers (2023-04-26T13:12:00Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
We study weight decay regularized training problems of deep neural networks with threshold activations.
We derive a simplified convex optimization formulation when the dataset can be shattered at a certain layer of the network.
arXiv Detail & Related papers (2023-03-06T18:59:13Z) - Low-rank Tensor Decomposition for Compression of Convolutional Neural
Networks Using Funnel Regularization [1.8579693774597708]
We propose a model reduction method to compress the pre-trained networks using low-rank tensor decomposition.
A new regularization method, called funnel function, is proposed to suppress the unimportant factors during the compression.
For ResNet18 with ImageNet2012, our reduced model can reach more than twi times speed up in terms of GMAC with merely 0.7% Top-1 accuracy drop.
arXiv Detail & Related papers (2021-12-07T13:41:51Z) - Neuron-based Pruning of Deep Neural Networks with Better Generalization
using Kronecker Factored Curvature Approximation [18.224344440110862]
The proposed algorithm directs the parameters of the compressed model toward a flatter solution by exploring the spectral radius of Hessian.
Our result shows that it improves the state-of-the-art results on neuron compression.
The method is able to achieve very small networks with small accuracy across different neural network models.
arXiv Detail & Related papers (2021-11-16T15:55:59Z) - Non-Gradient Manifold Neural Network [79.44066256794187]
Deep neural network (DNN) generally takes thousands of iterations to optimize via gradient descent.
We propose a novel manifold neural network based on non-gradient optimization.
arXiv Detail & Related papers (2021-06-15T06:39:13Z) - Robust Implicit Networks via Non-Euclidean Contractions [63.91638306025768]
Implicit neural networks show improved accuracy and significant reduction in memory consumption.
They can suffer from ill-posedness and convergence instability.
This paper provides a new framework to design well-posed and robust implicit neural networks.
arXiv Detail & Related papers (2021-06-06T18:05:02Z) - Tensor-Train Networks for Learning Predictive Modeling of
Multidimensional Data [0.0]
A promising strategy is based on tensor networks, which have been very successful in physical and chemical applications.
We show that the weights of a multidimensional regression model can be learned by means of tensor networks with the aim of performing a powerful compact representation.
An algorithm based on alternating least squares has been proposed for approximating the weights in TT-format with a reduction of computational power.
arXiv Detail & Related papers (2021-01-22T16:14:38Z) - A Generalized Neural Tangent Kernel Analysis for Two-layer Neural
Networks [87.23360438947114]
We show that noisy gradient descent with weight decay can still exhibit a " Kernel-like" behavior.
This implies that the training loss converges linearly up to a certain accuracy.
We also establish a novel generalization error bound for two-layer neural networks trained by noisy gradient descent with weight decay.
arXiv Detail & Related papers (2020-02-10T18:56:15Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
Deep neural networks achieve state-of-the-art performance for a range of classification and inference tasks.
The use of gradient combined nonvolutionity renders learning susceptible to novel problems.
We propose fusing neighboring layers of deeper networks that are trained with random variables.
arXiv Detail & Related papers (2020-01-28T18:25:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.