Tensor Decomposition for Model Reduction in Neural Networks: A Review
- URL: http://arxiv.org/abs/2304.13539v1
- Date: Wed, 26 Apr 2023 13:12:00 GMT
- Title: Tensor Decomposition for Model Reduction in Neural Networks: A Review
- Authors: Xingyi Liu and Keshab K. Parhi
- Abstract summary: Modern neural networks have revolutionized the fields of computer vision (CV) and Natural Language Processing (NLP)
They are widely used for solving complex CV tasks and NLP tasks such as image classification, image generation, and machine translation.
This paper reviews six tensor decomposition methods and illustrates their ability to compress model parameters.
- Score: 13.96938227911258
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern neural networks have revolutionized the fields of computer vision (CV)
and Natural Language Processing (NLP). They are widely used for solving complex
CV tasks and NLP tasks such as image classification, image generation, and
machine translation. Most state-of-the-art neural networks are
over-parameterized and require a high computational cost. One straightforward
solution is to replace the layers of the networks with their low-rank tensor
approximations using different tensor decomposition methods. This paper reviews
six tensor decomposition methods and illustrates their ability to compress
model parameters of convolutional neural networks (CNNs), recurrent neural
networks (RNNs) and Transformers. The accuracy of some compressed models can be
higher than the original versions. Evaluations indicate that tensor
decompositions can achieve significant reductions in model size, run-time and
energy consumption, and are well suited for implementing neural networks on
edge devices.
Related papers
- An experimental comparative study of backpropagation and alternatives for training binary neural networks for image classification [1.0749601922718608]
Binary neural networks promise to reduce the size of deep neural network models.
They may allow the deployment of more powerful models on edge devices.
However, binary neural networks are still proven to be difficult to train using the backpropagation-based gradient descent scheme.
arXiv Detail & Related papers (2024-08-08T13:39:09Z) - Novel Kernel Models and Exact Representor Theory for Neural Networks Beyond the Over-Parameterized Regime [52.00917519626559]
This paper presents two models of neural-networks and their training applicable to neural networks of arbitrary width, depth and topology.
We also present an exact novel representor theory for layer-wise neural network training with unregularized gradient descent in terms of a local-extrinsic neural kernel (LeNK)
This representor theory gives insight into the role of higher-order statistics in neural network training and the effect of kernel evolution in neural-network kernel models.
arXiv Detail & Related papers (2024-05-24T06:30:36Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Permutation Equivariant Neural Functionals [92.0667671999604]
This work studies the design of neural networks that can process the weights or gradients of other neural networks.
We focus on the permutation symmetries that arise in the weights of deep feedforward networks because hidden layer neurons have no inherent order.
In our experiments, we find that permutation equivariant neural functionals are effective on a diverse set of tasks.
arXiv Detail & Related papers (2023-02-27T18:52:38Z) - Variable Bitrate Neural Fields [75.24672452527795]
We present a dictionary method for compressing feature grids, reducing their memory consumption by up to 100x.
We formulate the dictionary optimization as a vector-quantized auto-decoder problem which lets us learn end-to-end discrete neural representations in a space where no direct supervision is available.
arXiv Detail & Related papers (2022-06-15T17:58:34Z) - Low-bit Quantization of Recurrent Neural Network Language Models Using
Alternating Direction Methods of Multipliers [67.688697838109]
This paper presents a novel method to train quantized RNNLMs from scratch using alternating direction methods of multipliers (ADMM)
Experiments on two tasks suggest the proposed ADMM quantization achieved a model size compression factor of up to 31 times over the full precision baseline RNNLMs.
arXiv Detail & Related papers (2021-11-29T09:30:06Z) - A Sparse Coding Interpretation of Neural Networks and Theoretical
Implications [0.0]
Deep convolutional neural networks have achieved unprecedented performance in various computer vision tasks.
We propose a sparse coding interpretation of neural networks that have ReLU activation.
We derive a complete convolutional neural network without normalization and pooling.
arXiv Detail & Related papers (2021-08-14T21:54:47Z) - Tensor-Train Networks for Learning Predictive Modeling of
Multidimensional Data [0.0]
A promising strategy is based on tensor networks, which have been very successful in physical and chemical applications.
We show that the weights of a multidimensional regression model can be learned by means of tensor networks with the aim of performing a powerful compact representation.
An algorithm based on alternating least squares has been proposed for approximating the weights in TT-format with a reduction of computational power.
arXiv Detail & Related papers (2021-01-22T16:14:38Z) - A Fully Tensorized Recurrent Neural Network [48.50376453324581]
We introduce a "fully tensorized" RNN architecture which jointly encodes the separate weight matrices within each recurrent cell.
This approach reduces model size by several orders of magnitude, while still maintaining similar or better performance compared to standard RNNs.
arXiv Detail & Related papers (2020-10-08T18:24:12Z) - Stable Low-rank Tensor Decomposition for Compression of Convolutional
Neural Network [19.717842489217684]
This paper is the first study on degeneracy in the tensor decomposition of convolutional kernels.
We present a novel method, which can stabilize the low-rank approximation of convolutional kernels and ensure efficient compression.
We evaluate our approach on popular CNN architectures for image classification and show that our method results in much lower accuracy degradation and provides consistent performance.
arXiv Detail & Related papers (2020-08-12T17:10:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.