Revealing the Hidden Patterns: A Comparative Study on Profiling
Subpopulations of MOOC Students
- URL: http://arxiv.org/abs/2008.05850v1
- Date: Wed, 12 Aug 2020 10:38:50 GMT
- Title: Revealing the Hidden Patterns: A Comparative Study on Profiling
Subpopulations of MOOC Students
- Authors: Lei Shi, Alexandra I. Cristea, Armando M. Toda, Wilk Oliveira
- Abstract summary: Massive Open Online Courses (MOOCs) exhibit a remarkable heterogeneity of students.
The advent of complex "big data" from MOOC platforms is a challenging yet rewarding opportunity to deeply understand how students are engaged in MOOCs.
We report on clustering analysis of student activities and comparative analysis on both behavioral patterns and demographical patterns between student subpopulations in the MOOC.
- Score: 61.58283466715385
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Massive Open Online Courses (MOOCs) exhibit a remarkable heterogeneity of
students. The advent of complex "big data" from MOOC platforms is a challenging
yet rewarding opportunity to deeply understand how students are engaged in
MOOCs. Past research, looking mainly into overall behavior, may have missed
patterns related to student diversity. Using a large dataset from a MOOC
offered by FutureLearn, we delve into a new way of investigating hidden
patterns through both machine learning and statistical modelling. In this
paper, we report on clustering analysis of student activities and comparative
analysis on both behavioral patterns and demographical patterns between student
subpopulations in the MOOC. Our approach allows for a deeper understanding of
how MOOC students behave and achieve. Our findings may be used to design
adaptive strategies towards an enhanced MOOC experience
Related papers
- A Comparative Analysis of Student Performance Predictions in Online Courses using Heterogeneous Knowledge Graphs [0.0]
We analyze a heterogeneous knowledge graph consisting of students, course videos, formative assessments and their interactions to predict student performance.
We then compare the models generated between 5 on-campus and 2 fully-online MOOC-style instances of the same course.
The model developed achieved a 70-90% accuracy of predicting whether a student would pass a particular problem set based on content consumed, course instance, and modality.
arXiv Detail & Related papers (2024-05-19T03:33:59Z) - Toward In-Context Teaching: Adapting Examples to Students' Misconceptions [54.82965010592045]
We introduce a suite of models and evaluation methods we call AdapT.
AToM is a new probabilistic model for adaptive teaching that jointly infers students' past beliefs and optimize for the correctness of future beliefs.
Our results highlight both the difficulty of the adaptive teaching task and the potential of learned adaptive models for solving it.
arXiv Detail & Related papers (2024-05-07T17:05:27Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
We show that mixture-of-experts (MoE) techniques can achieve state-of-the-art performance on a range of benchmarks over dense models of equivalent computational cost.
Our research offers valuable insights into stabilizing the training of MoE models, understanding the impact of MoE on model interpretability, and balancing the trade-offs between compute performance when scaling vision-language models.
arXiv Detail & Related papers (2023-03-13T16:00:31Z) - Multi-View MOOC Quality Evaluation via Information-Aware Graph
Representation Learning [26.723385384507274]
We develop an Information-aware Graph Representation Learning(IaGRL) for multi-view MOOC quality evaluation.
We first build a MOOC Heterogeneous Network (HIN) to represent the interactions and relationships among entities in MOOC platforms.
And then we decompose the MOOC HIN into multiple single-relation graphs based on meta-paths to depict the multi-view semantics of courses.
arXiv Detail & Related papers (2023-01-01T10:27:06Z) - Multi-Layer Personalized Federated Learning for Mitigating Biases in Student Predictive Analytics [8.642174401125263]
We propose a Multi-Layer Personalized Federated Learning (MLPFL) methodology to optimize inference accuracy over different layers of student grouping criteria.
In our approach, personalized models for individual student subgroups are derived from a global model.
Experiments on three real-world online course datasets show significant improvements achieved by our approach over existing student modeling benchmarks.
arXiv Detail & Related papers (2022-12-05T17:27:28Z) - Student-centric Model of Learning Management System Activity and
Academic Performance: from Correlation to Causation [2.169383034643496]
In recent years, there is a lot of interest in modeling students' digital traces in Learning Management System (LMS) to understand students' learning behavior patterns.
This paper explores a student-centric analytical framework for LMS activity data that can provide not only correlational but causal insights mined from observational data.
We envision that those insights will provide convincing evidence for college student support groups to launch student-centered and targeted interventions.
arXiv Detail & Related papers (2022-10-27T14:08:25Z) - Mitigating Biases in Student Performance Prediction via Attention-Based
Personalized Federated Learning [7.040747348755578]
Traditional learning-based approaches to student modeling generalize poorly to underrepresented student groups due to biases in data availability.
We propose a methodology for predicting student performance from their online learning activities that optimize inference accuracy over different demographic groups such as race and gender.
arXiv Detail & Related papers (2022-08-02T00:22:20Z) - Exploring Bayesian Deep Learning for Urgent Instructor Intervention Need
in MOOC Forums [58.221459787471254]
Massive Open Online Courses (MOOCs) have become a popular choice for e-learning thanks to their great flexibility.
Due to large numbers of learners and their diverse backgrounds, it is taxing to offer real-time support.
With the large volume of posts and high workloads for MOOC instructors, it is unlikely that the instructors can identify all learners requiring intervention.
This paper explores for the first time Bayesian deep learning on learner-based text posts with two methods: Monte Carlo Dropout and Variational Inference.
arXiv Detail & Related papers (2021-04-26T15:12:13Z) - Social Engagement versus Learning Engagement -- An Exploratory Study of
FutureLearn Learners [61.58283466715385]
Massive Open Online Courses (MOOCs) continue to see increasing enrolment, but only a small percent of enrolees completes the MOOCs.
This study is particularly concerned with how learners interact with peers, along with their study progression in MOOCs.
The study was conducted on the less explored FutureLearn platform, which employs a social constructivist approach and promotes collaborative learning.
arXiv Detail & Related papers (2020-08-11T16:09:10Z) - Social Interactions Clustering MOOC Students: An Exploratory Study [57.822523354358665]
Comments were categorized based on how students interacted with them, e.g., how a student's comment received replies from peers.
Statistical modelling and machine learning were used to analyze comment categorization, resulting in 3 strong and stable clusters.
arXiv Detail & Related papers (2020-08-10T09:32:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.