Uncovering Student Engagement Patterns in Moodle with Interpretable Machine Learning
- URL: http://arxiv.org/abs/2412.11826v1
- Date: Mon, 16 Dec 2024 14:47:25 GMT
- Title: Uncovering Student Engagement Patterns in Moodle with Interpretable Machine Learning
- Authors: Laura J. Johnston, Jim E. Griffin, Ioanna Manolopoulou, Takoua Jendoubi,
- Abstract summary: This study introduces a methodology for quantifying engagement across an entire module using virtual learning environment (VLE) activity log data.
Using study session frequency, immediacy, and diversity, we create a cumulative engagement metric.
In a case study of a computing module at University College London's Department of Statistical Science, we examine how delivery methods impact student behaviour.
- Score: 0.0
- License:
- Abstract: Understanding and enhancing student engagement through digital platforms is critical in higher education. This study introduces a methodology for quantifying engagement across an entire module using virtual learning environment (VLE) activity log data. Using study session frequency, immediacy, and diversity, we create a cumulative engagement metric and model it against weekly VLE interactions with resources to identify critical periods and resources predictive of student engagement. In a case study of a computing module at University College London's Department of Statistical Science, we further examine how delivery methods (online, hybrid, in-person) impact student behaviour. Across nine regression models, we validate the consistency of the random forest model and highlight the interpretive strengths of generalised additive models for analysing engagement patterns. Results show weekly VLE clicks as reliable engagement predictors, with early weeks and the first assessment period being key. However, the impact of delivery methods on engagement is inconclusive due to inconsistencies across models. These findings support early intervention strategies to assist students at risk of disengagement. This work contributes to learning analytics research by proposing a refined VLE-based engagement metric and advancing data-driven teaching strategies in higher education.
Related papers
- RIGL: A Unified Reciprocal Approach for Tracing the Independent and Group Learning Processes [22.379764500005503]
We propose RIGL, a unified Reciprocal model to trace knowledge states at both the individual and group levels.
In this paper, we introduce a time frame-aware reciprocal embedding module to concurrently model both student and group response interactions.
We design a relation-guided temporal attentive network, comprised of dynamic graph modeling coupled with a temporal self-attention mechanism.
arXiv Detail & Related papers (2024-06-18T10:16:18Z) - Evaluating Pedagogical Incentives in Undergraduate Computing: A Mixed Methods Approach Using Learning Analytics [0.0]
This paper assesses the impact of new pedagogical incentives implemented in a first-year undergraduate computing module at University College London.
We employ a mixed methods approach, combining learning analytics with qualitative data to evaluate the effectiveness of these incentives on increasing student engagement.
Our paper introduces an interpretable and actionable model for student engagement, which integrates objective, data-driven analysis with students' perspectives.
arXiv Detail & Related papers (2024-03-13T16:39:38Z) - Continual Learning with Pre-Trained Models: A Survey [61.97613090666247]
Continual Learning aims to overcome the catastrophic forgetting of former knowledge when learning new ones.
This paper presents a comprehensive survey of the latest advancements in PTM-based CL.
arXiv Detail & Related papers (2024-01-29T18:27:52Z) - Bag of States: A Non-sequential Approach to Video-based Engagement
Measurement [7.864500429933145]
Students' behavioral and emotional states need to be analyzed at fine-grained time scales in order to measure their level of engagement.
Many existing approaches have developed sequential andtemporal models, such as recurrent neural networks, temporal convolutional networks, and three-dimensional convolutional neural networks, for measuring student engagement from videos.
We develop bag-of-words-based models in which only occurrence of behavioral and emotional states of students is modeled and analyzed and not the order in which they occur.
arXiv Detail & Related papers (2023-01-17T07:12:34Z) - Distantly-Supervised Named Entity Recognition with Adaptive Teacher
Learning and Fine-grained Student Ensemble [56.705249154629264]
Self-training teacher-student frameworks are proposed to improve the robustness of NER models.
In this paper, we propose an adaptive teacher learning comprised of two teacher-student networks.
Fine-grained student ensemble updates each fragment of the teacher model with a temporal moving average of the corresponding fragment of the student, which enhances consistent predictions on each model fragment against noise.
arXiv Detail & Related papers (2022-12-13T12:14:09Z) - Multi-Layer Personalized Federated Learning for Mitigating Biases in Student Predictive Analytics [8.642174401125263]
We propose a Multi-Layer Personalized Federated Learning (MLPFL) methodology to optimize inference accuracy over different layers of student grouping criteria.
In our approach, personalized models for individual student subgroups are derived from a global model.
Experiments on three real-world online course datasets show significant improvements achieved by our approach over existing student modeling benchmarks.
arXiv Detail & Related papers (2022-12-05T17:27:28Z) - Responsible Active Learning via Human-in-the-loop Peer Study [88.01358655203441]
We propose a responsible active learning method, namely Peer Study Learning (PSL), to simultaneously preserve data privacy and improve model stability.
We first introduce a human-in-the-loop teacher-student architecture to isolate unlabelled data from the task learner (teacher) on the cloud-side.
During training, the task learner instructs the light-weight active learner which then provides feedback on the active sampling criterion.
arXiv Detail & Related papers (2022-11-24T13:18:27Z) - Mitigating Biases in Student Performance Prediction via Attention-Based
Personalized Federated Learning [7.040747348755578]
Traditional learning-based approaches to student modeling generalize poorly to underrepresented student groups due to biases in data availability.
We propose a methodology for predicting student performance from their online learning activities that optimize inference accuracy over different demographic groups such as race and gender.
arXiv Detail & Related papers (2022-08-02T00:22:20Z) - Revealing the Hidden Patterns: A Comparative Study on Profiling
Subpopulations of MOOC Students [61.58283466715385]
Massive Open Online Courses (MOOCs) exhibit a remarkable heterogeneity of students.
The advent of complex "big data" from MOOC platforms is a challenging yet rewarding opportunity to deeply understand how students are engaged in MOOCs.
We report on clustering analysis of student activities and comparative analysis on both behavioral patterns and demographical patterns between student subpopulations in the MOOC.
arXiv Detail & Related papers (2020-08-12T10:38:50Z) - Social Engagement versus Learning Engagement -- An Exploratory Study of
FutureLearn Learners [61.58283466715385]
Massive Open Online Courses (MOOCs) continue to see increasing enrolment, but only a small percent of enrolees completes the MOOCs.
This study is particularly concerned with how learners interact with peers, along with their study progression in MOOCs.
The study was conducted on the less explored FutureLearn platform, which employs a social constructivist approach and promotes collaborative learning.
arXiv Detail & Related papers (2020-08-11T16:09:10Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
We propose a novel multi-task learning method called Task-Feature Collaborative Learning (TFCL)
Specifically, we first propose a base model with a heterogeneous block-diagonal structure regularizer to leverage the collaborative grouping of features and tasks.
As a practical extension, we extend the base model by allowing overlapping features and differentiating the hard tasks.
arXiv Detail & Related papers (2020-04-29T02:32:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.