Testing the Safety of Self-driving Vehicles by Simulating Perception and
Prediction
- URL: http://arxiv.org/abs/2008.06020v1
- Date: Thu, 13 Aug 2020 17:20:02 GMT
- Title: Testing the Safety of Self-driving Vehicles by Simulating Perception and
Prediction
- Authors: Kelvin Wong, Qiang Zhang, Ming Liang, Bin Yang, Renjie Liao, Abbas
Sadat, Raquel Urtasun
- Abstract summary: We propose an alternative to sensor simulation, as sensor simulation is expensive and has large domain gaps.
We directly simulate the outputs of the self-driving vehicle's perception and prediction system, enabling realistic motion planning testing.
- Score: 88.0416857308144
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel method for testing the safety of self-driving vehicles in
simulation. We propose an alternative to sensor simulation, as sensor
simulation is expensive and has large domain gaps. Instead, we directly
simulate the outputs of the self-driving vehicle's perception and prediction
system, enabling realistic motion planning testing. Specifically, we use paired
data in the form of ground truth labels and real perception and prediction
outputs to train a model that predicts what the online system will produce.
Importantly, the inputs to our system consists of high definition maps,
bounding boxes, and trajectories, which can be easily sketched by a test
engineer in a matter of minutes. This makes our approach a much more scalable
solution. Quantitative results on two large-scale datasets demonstrate that we
can realistically test motion planning using our simulations.
Related papers
- CADSim: Robust and Scalable in-the-wild 3D Reconstruction for
Controllable Sensor Simulation [44.83732884335725]
Sensor simulation involves modeling traffic participants, such as vehicles, with high quality appearance and articulated geometry.
Current reconstruction approaches struggle on in-the-wild sensor data, due to its sparsity and noise.
We present CADSim, which combines part-aware object-class priors via a small set of CAD models with differentiable rendering to automatically reconstruct vehicle geometry.
arXiv Detail & Related papers (2023-11-02T17:56:59Z) - Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research [76.93956925360638]
Waymax is a new data-driven simulator for autonomous driving in multi-agent scenes.
It runs entirely on hardware accelerators such as TPUs/GPUs and supports in-graph simulation for training.
We benchmark a suite of popular imitation and reinforcement learning algorithms with ablation studies on different design decisions.
arXiv Detail & Related papers (2023-10-12T20:49:15Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
We show data-driven traffic simulation can be formulated as a world model.
We present TrafficBots, a multi-agent policy built upon motion prediction and end-to-end driving.
Experiments on the open motion dataset show TrafficBots can simulate realistic multi-agent behaviors.
arXiv Detail & Related papers (2023-03-07T18:28:41Z) - An Intelligent Self-driving Truck System For Highway Transportation [81.12838700312308]
In this paper, we introduce an intelligent self-driving truck system.
Our presented system consists of three main components, 1) a realistic traffic simulation module for generating realistic traffic flow in testing scenarios, 2) a high-fidelity truck model which is designed and evaluated for mimicking real truck response in real-world deployment.
We also deploy our proposed system on a real truck and conduct real world experiments which shows our system's capacity of mitigating sim-to-real gap.
arXiv Detail & Related papers (2021-12-31T04:54:13Z) - Towards Optimal Strategies for Training Self-Driving Perception Models
in Simulation [98.51313127382937]
We focus on the use of labels in the synthetic domain alone.
Our approach introduces both a way to learn neural-invariant representations and a theoretically inspired view on how to sample the data from the simulator.
We showcase our approach on the bird's-eye-view vehicle segmentation task with multi-sensor data.
arXiv Detail & Related papers (2021-11-15T18:37:43Z) - SimNet: Learning Reactive Self-driving Simulations from Real-world
Observations [10.035169936164504]
We present an end-to-end trainable machine learning system capable of realistically simulating driving experiences.
This can be used for the verification of self-driving system performance without relying on expensive and time-consuming road testing.
arXiv Detail & Related papers (2021-05-26T05:14:23Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
We propose efficient mechanisms to characterize and generate testing scenarios using a state-of-the-art driving simulator.
We use our method to characterize real driving data from the Next Generation Simulation (NGSIM) project.
We rank the scenarios by defining metrics based on the complexity of avoiding accidents and provide insights into how the AV could have minimized the probability of incurring an accident.
arXiv Detail & Related papers (2021-03-12T17:00:23Z) - A machine learning environment for evaluating autonomous driving
software [1.6516902135723865]
We present a machine learning environment for detecting autonomous vehicle corner case behavior.
Our environment is based on connecting the CARLA simulation software to machine learning framework and custom AI client software.
Our system can search for corner cases where the vehicle AI is unable to correctly understand the situation.
arXiv Detail & Related papers (2020-03-07T13:05:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.