Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research
- URL: http://arxiv.org/abs/2310.08710v1
- Date: Thu, 12 Oct 2023 20:49:15 GMT
- Title: Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research
- Authors: Cole Gulino, Justin Fu, Wenjie Luo, George Tucker, Eli Bronstein,
Yiren Lu, Jean Harb, Xinlei Pan, Yan Wang, Xiangyu Chen, John D. Co-Reyes,
Rishabh Agarwal, Rebecca Roelofs, Yao Lu, Nico Montali, Paul Mougin, Zoey
Yang, Brandyn White, Aleksandra Faust, Rowan McAllister, Dragomir Anguelov,
Benjamin Sapp
- Abstract summary: Waymax is a new data-driven simulator for autonomous driving in multi-agent scenes.
It runs entirely on hardware accelerators such as TPUs/GPUs and supports in-graph simulation for training.
We benchmark a suite of popular imitation and reinforcement learning algorithms with ablation studies on different design decisions.
- Score: 76.93956925360638
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Simulation is an essential tool to develop and benchmark autonomous vehicle
planning software in a safe and cost-effective manner. However, realistic
simulation requires accurate modeling of nuanced and complex multi-agent
interactive behaviors. To address these challenges, we introduce Waymax, a new
data-driven simulator for autonomous driving in multi-agent scenes, designed
for large-scale simulation and testing. Waymax uses publicly-released,
real-world driving data (e.g., the Waymo Open Motion Dataset) to initialize or
play back a diverse set of multi-agent simulated scenarios. It runs entirely on
hardware accelerators such as TPUs/GPUs and supports in-graph simulation for
training, making it suitable for modern large-scale, distributed machine
learning workflows. To support online training and evaluation, Waymax includes
several learned and hard-coded behavior models that allow for realistic
interaction within simulation. To supplement Waymax, we benchmark a suite of
popular imitation and reinforcement learning algorithms with ablation studies
on different design decisions, where we highlight the effectiveness of routes
as guidance for planning agents and the ability of RL to overfit against
simulated agents.
Related papers
- Solving Motion Planning Tasks with a Scalable Generative Model [15.858076912795621]
We present an efficient solution based on generative models which learns the dynamics of the driving scenes.
Our innovative design allows the model to operate in both full-Autoregressive and partial-Autoregressive modes.
We conclude that the proposed generative model may serve as a foundation for a variety of motion planning tasks.
arXiv Detail & Related papers (2024-07-03T03:57:05Z) - CityFlowER: An Efficient and Realistic Traffic Simulator with Embedded
Machine Learning Models [25.567208505574072]
CityFlowER is an advanced simulator for efficient and realistic city-wide traffic simulation.
It pre-embeds Machine Learning models within the simulator, eliminating the need for external API interactions.
It offers unparalleled flexibility and efficiency, particularly in large-scale simulations.
arXiv Detail & Related papers (2024-02-09T01:19:41Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
We show data-driven traffic simulation can be formulated as a world model.
We present TrafficBots, a multi-agent policy built upon motion prediction and end-to-end driving.
Experiments on the open motion dataset show TrafficBots can simulate realistic multi-agent behaviors.
arXiv Detail & Related papers (2023-03-07T18:28:41Z) - Generative AI-empowered Simulation for Autonomous Driving in Vehicular
Mixed Reality Metaverses [130.15554653948897]
In vehicular mixed reality (MR) Metaverse, distance between physical and virtual entities can be overcome.
Large-scale traffic and driving simulation via realistic data collection and fusion from the physical world is difficult and costly.
We propose an autonomous driving architecture, where generative AI is leveraged to synthesize unlimited conditioned traffic and driving data in simulations.
arXiv Detail & Related papers (2023-02-16T16:54:10Z) - Continual learning autoencoder training for a particle-in-cell
simulation via streaming [52.77024349608834]
upcoming exascale era will provide a new generation of physics simulations with high resolution.
These simulations will have a high resolution, which will impact the training of machine learning models since storing a high amount of simulation data on disk is nearly impossible.
This work presents an approach that trains a neural network concurrently to a running simulation without data on a disk.
arXiv Detail & Related papers (2022-11-09T09:55:14Z) - BITS: Bi-level Imitation for Traffic Simulation [38.28736985320897]
We take a data-driven approach and propose a method that can learn to generate traffic behaviors from real-world driving logs.
We empirically validate our method, named Bi-level Imitation for Traffic Simulation (BITS), with scenarios from two large-scale driving datasets.
As part of our core contributions, we develop and open source a software tool that unifies data formats across different driving datasets.
arXiv Detail & Related papers (2022-08-26T02:17:54Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
We propose TrafficSim, a multi-agent behavior model for realistic traffic simulation.
In particular, we leverage an implicit latent variable model to parameterize a joint actor policy.
We show TrafficSim generates significantly more realistic and diverse traffic scenarios as compared to a diverse set of baselines.
arXiv Detail & Related papers (2021-01-17T00:29:30Z) - Testing the Safety of Self-driving Vehicles by Simulating Perception and
Prediction [88.0416857308144]
We propose an alternative to sensor simulation, as sensor simulation is expensive and has large domain gaps.
We directly simulate the outputs of the self-driving vehicle's perception and prediction system, enabling realistic motion planning testing.
arXiv Detail & Related papers (2020-08-13T17:20:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.