An Efficient Model Inference Algorithm for Learning-based Testing of
Reactive Systems
- URL: http://arxiv.org/abs/2008.06268v1
- Date: Fri, 14 Aug 2020 09:48:58 GMT
- Title: An Efficient Model Inference Algorithm for Learning-based Testing of
Reactive Systems
- Authors: Muddassar A. Sindhu
- Abstract summary: Learning-based testing (LBT) is an emerging methodology to automate iterative black-box requirements testing of software systems.
We describe the IKL learning algorithm which is an active incremental learning algorithm for deterministic Kripke structures.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning-based testing (LBT) is an emerging methodology to automate iterative
black-box requirements testing of software systems. The methodology involves
combining model inference with model checking techniques. However, a variety of
optimisations on model inference are necessary in order to achieve scalable
testing for large systems. In this paper we describe the IKL learning algorithm
which is an active incremental learning algorithm for deterministic Kripke
structures. We formally prove the correctness of IKL. We discuss the
optimisations it incorporates to achieve scalability of testing. We also
evaluate a black box heuristic for test termination based on convergence of IKL
learning.
Related papers
- Introducing Ensemble Machine Learning Algorithms for Automatic Test Case Generation using Learning Based Testing [0.0]
Ensemble methods are powerful machine learning algorithms that combine multiple models to enhance prediction capabilities and reduce generalization errors.
This study aims to systematically investigate the combination of ensemble methods and base classifiers for model inference in a Learning Based Testing (LBT) algorithm to generate fault-detecting test cases for SUTs as a proof of concept.
arXiv Detail & Related papers (2024-09-06T23:24:59Z) - NEVIS'22: A Stream of 100 Tasks Sampled from 30 Years of Computer Vision
Research [96.53307645791179]
We introduce the Never-Ending VIsual-classification Stream (NEVIS'22), a benchmark consisting of a stream of over 100 visual classification tasks.
Despite being limited to classification, the resulting stream has a rich diversity of tasks from OCR, to texture analysis, scene recognition, and so forth.
Overall, NEVIS'22 poses an unprecedented challenge for current sequential learning approaches due to the scale and diversity of tasks.
arXiv Detail & Related papers (2022-11-15T18:57:46Z) - Towards Diverse Evaluation of Class Incremental Learning: A Representation Learning Perspective [67.45111837188685]
Class incremental learning (CIL) algorithms aim to continually learn new object classes from incrementally arriving data.
We experimentally analyze neural network models trained by CIL algorithms using various evaluation protocols in representation learning.
arXiv Detail & Related papers (2022-06-16T11:44:11Z) - Learning Curves for Decision Making in Supervised Machine Learning -- A
Survey [9.994200032442413]
Learning curves are a concept from social sciences that has been adopted in the context of machine learning.
We contribute a framework that categorizes learning curve approaches using three criteria: the decision situation that they address, the intrinsic learning curve question that they answer and the type of resources that they use.
arXiv Detail & Related papers (2022-01-28T14:34:32Z) - Active Learning of Markov Decision Processes using Baum-Welch algorithm
(Extended) [0.0]
This paper revisits and adapts the classic Baum-Welch algorithm for learning Markov decision processes and Markov chains.
We empirically compare our approach with state-of-the-art tools and demonstrate that the proposed active learning procedure can significantly reduce the number of observations required to obtain accurate models.
arXiv Detail & Related papers (2021-10-06T18:54:19Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
We propose a novel framework to efficiently test a machine learning model using only a small amount of labeled test data.
The idea is to estimate the metrics of interest for a model-under-test using Bayesian neural network (BNN)
arXiv Detail & Related papers (2021-04-11T12:14:04Z) - Finding the Homology of Decision Boundaries with Active Learning [26.31885403636642]
We propose an active learning algorithm to recover the homology of decision boundaries.
Our algorithm sequentially and adaptively selects which samples it requires the labels of.
Experiments on several datasets show the sample complexity improvement in recovering the homology.
arXiv Detail & Related papers (2020-11-19T04:22:06Z) - Model-Agnostic Explanations using Minimal Forcing Subsets [11.420687735660097]
We propose a new model-agnostic algorithm to identify a minimal set of training samples that are indispensable for a given model's decision.
Our algorithm identifies such a set of "indispensable" samples iteratively by solving a constrained optimization problem.
Results show that our algorithm is an effective and easy-to-comprehend tool that helps to better understand local model behavior.
arXiv Detail & Related papers (2020-11-01T22:45:16Z) - Control as Hybrid Inference [62.997667081978825]
We present an implementation of CHI which naturally mediates the balance between iterative and amortised inference.
We verify the scalability of our algorithm on a continuous control benchmark, demonstrating that it outperforms strong model-free and model-based baselines.
arXiv Detail & Related papers (2020-07-11T19:44:09Z) - Stepwise Model Selection for Sequence Prediction via Deep Kernel
Learning [100.83444258562263]
We propose a novel Bayesian optimization (BO) algorithm to tackle the challenge of model selection in this setting.
In order to solve the resulting multiple black-box function optimization problem jointly and efficiently, we exploit potential correlations among black-box functions.
We are the first to formulate the problem of stepwise model selection (SMS) for sequence prediction, and to design and demonstrate an efficient joint-learning algorithm for this purpose.
arXiv Detail & Related papers (2020-01-12T09:42:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.