Homotopic Gradients of Generative Density Priors for MR Image
Reconstruction
- URL: http://arxiv.org/abs/2008.06284v2
- Date: Mon, 1 Feb 2021 16:22:56 GMT
- Title: Homotopic Gradients of Generative Density Priors for MR Image
Reconstruction
- Authors: Cong Quan, Jinjie Zhou, Yuanzheng Zhu, Yang Chen, Shanshan Wang, Dong
Liang, Qiegen Liu
- Abstract summary: Homotopic gradients of generative density priors are proposed for MRI reconstruction.
Experiment results imply the remarkable performance of HGGDP in terms of high reconstruction accuracy.
- Score: 17.260092753832545
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning, particularly the generative model, has demonstrated tremendous
potential to significantly speed up image reconstruction with reduced
measurements recently. Rather than the existing generative models that often
optimize the density priors, in this work, by taking advantage of the denoising
score matching, homotopic gradients of generative density priors (HGGDP) are
proposed for magnetic resonance imaging (MRI) reconstruction. More precisely,
to tackle the low-dimensional manifold and low data density region issues in
generative density prior, we estimate the target gradients in
higher-dimensional space. We train a more powerful noise conditional score
network by forming high-dimensional tensor as the network input at the training
phase. More artificial noise is also injected in the embedding space. At the
reconstruction stage, a homotopy method is employed to pursue the density
prior, such as to boost the reconstruction performance. Experiment results
imply the remarkable performance of HGGDP in terms of high reconstruction
accuracy; only 10% of the k-space data can still generate images of high
quality as effectively as standard MRI reconstruction with the fully sampled
data.
Related papers
- Noise Level Adaptive Diffusion Model for Robust Reconstruction of Accelerated MRI [34.361078452552945]
Real-world MRI acquisitions already contain inherent noise due to thermal fluctuations.
We propose a posterior sampling strategy with a novel NoIse Level Adaptive Data Consistency (Nila-DC) operation.
Our method surpasses the state-of-the-art MRI reconstruction methods, and is highly robust against various noise levels.
arXiv Detail & Related papers (2024-03-08T12:07:18Z) - Latent Diffusion Prior Enhanced Deep Unfolding for Snapshot Spectral Compressive Imaging [17.511583657111792]
Snapshot spectral imaging reconstruction aims to reconstruct three-dimensional spatial-spectral images from a single-shot two-dimensional compressed measurement.
We introduce a generative model, namely the latent diffusion model (LDM), to generate degradation-free prior to deep unfolding method.
arXiv Detail & Related papers (2023-11-24T04:55:20Z) - Denoising Simulated Low-Field MRI (70mT) using Denoising Autoencoders
(DAE) and Cycle-Consistent Generative Adversarial Networks (Cycle-GAN) [68.8204255655161]
Cycle Consistent Generative Adversarial Network (GAN) is implemented to yield high-field, high resolution, high signal-to-noise ratio (SNR) Magnetic Resonance Imaging (MRI) images.
Images were utilized to train a Denoising Autoencoder (DAE) and a Cycle-GAN, with paired and unpaired cases.
This work demonstrates the use of a generative deep learning model that can outperform classical DAEs to improve low-field MRI images and does not require image pairs.
arXiv Detail & Related papers (2023-07-12T00:01:00Z) - Pixelated Reconstruction of Foreground Density and Background Surface
Brightness in Gravitational Lensing Systems using Recurrent Inference
Machines [116.33694183176617]
We use a neural network based on the Recurrent Inference Machine to reconstruct an undistorted image of the background source and the lens mass density distribution as pixelated maps.
When compared to more traditional parametric models, the proposed method is significantly more expressive and can reconstruct complex mass distributions.
arXiv Detail & Related papers (2023-01-10T19:00:12Z) - Low-rank Tensor Assisted K-space Generative Model for Parallel Imaging
Reconstruction [14.438899814473446]
We present a new idea, low-rank tensor assisted k-space generative model (LR-KGM) for parallel imaging reconstruction.
This means that we transform original prior information into high-dimensional prior information for learning.
Experimental comparisons with the state-of-the-arts demonstrated that the proposed LR-KGM method achieved better performance.
arXiv Detail & Related papers (2022-12-11T13:34:43Z) - K-space and Image Domain Collaborative Energy based Model for Parallel
MRI Reconstruction [21.317550364310343]
Decreasing magnetic resonance (MR) image acquisition times can potentially make MR examinations more accessible.
We propose a k-space and image domain collaborative generative model to comprehensively estimate the MR data from under-sampled measurement.
Experimental comparisons with the state-of-the-arts demonstrated that the proposed hybrid method has less error in reconstruction and is more stable under different acceleration factors.
arXiv Detail & Related papers (2022-03-21T07:38:59Z) - Robust Compressed Sensing MRI with Deep Generative Priors [84.69062247243953]
We present the first successful application of the CSGM framework on clinical MRI data.
We train a generative prior on brain scans from the fastMRI dataset, and show that posterior sampling via Langevin dynamics achieves high quality reconstructions.
arXiv Detail & Related papers (2021-08-03T08:52:06Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z) - Deep Gaussian Scale Mixture Prior for Spectral Compressive Imaging [48.34565372026196]
We propose a novel HSI reconstruction method based on the a Posterior (MAP) estimation framework.
We also propose to estimate the local means of the GSM models by the deep convolutional neural network (DCNN)
arXiv Detail & Related papers (2021-03-12T08:57:06Z) - Non-local Meets Global: An Iterative Paradigm for Hyperspectral Image
Restoration [66.68541690283068]
We propose a unified paradigm combining the spatial and spectral properties for hyperspectral image restoration.
The proposed paradigm enjoys performance superiority from the non-local spatial denoising and light computation complexity.
Experiments on HSI denoising, compressed reconstruction, and inpainting tasks, with both simulated and real datasets, demonstrate its superiority.
arXiv Detail & Related papers (2020-10-24T15:53:56Z) - Training Variational Networks with Multi-Domain Simulations:
Speed-of-Sound Image Reconstruction [5.47832435255656]
Variational Networks (VN) have been shown to be a potential learning-based approach for optimizing inverse problems in image reconstruction.
We present for the first time a VN solution for a pulse-echo SoS image reconstruction problem using waves with conventional transducers and single-sided tissue access.
We show that the proposed regularization techniques combined with multi-source domain training yield substantial improvements in the domain adaptation capabilities of VN.
arXiv Detail & Related papers (2020-06-25T13:32:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.