Robust Compressed Sensing MRI with Deep Generative Priors
- URL: http://arxiv.org/abs/2108.01368v1
- Date: Tue, 3 Aug 2021 08:52:06 GMT
- Title: Robust Compressed Sensing MRI with Deep Generative Priors
- Authors: Ajil Jalal and Marius Arvinte and Giannis Daras and Eric Price and
Alexandros G. Dimakis and Jonathan I. Tamir
- Abstract summary: We present the first successful application of the CSGM framework on clinical MRI data.
We train a generative prior on brain scans from the fastMRI dataset, and show that posterior sampling via Langevin dynamics achieves high quality reconstructions.
- Score: 84.69062247243953
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The CSGM framework (Bora-Jalal-Price-Dimakis'17) has shown that deep
generative priors can be powerful tools for solving inverse problems. However,
to date this framework has been empirically successful only on certain datasets
(for example, human faces and MNIST digits), and it is known to perform poorly
on out-of-distribution samples. In this paper, we present the first successful
application of the CSGM framework on clinical MRI data. We train a generative
prior on brain scans from the fastMRI dataset, and show that posterior sampling
via Langevin dynamics achieves high quality reconstructions. Furthermore, our
experiments and theory show that posterior sampling is robust to changes in the
ground-truth distribution and measurement process. Our code and models are
available at: \url{https://github.com/utcsilab/csgm-mri-langevin}.
Related papers
- Highly Accelerated MRI via Implicit Neural Representation Guided Posterior Sampling of Diffusion Models [2.5412006057370893]
Implicit neural representation (INR) has emerged as a powerful paradigm for solving inverse problems.
Our proposed framework can be a generalizable framework to solve inverse problems in other medical imaging tasks.
arXiv Detail & Related papers (2024-07-03T01:37:56Z) - Ambient Diffusion Posterior Sampling: Solving Inverse Problems with
Diffusion Models trained on Corrupted Data [56.81246107125692]
Ambient Diffusion Posterior Sampling (A-DPS) is a generative model pre-trained on one type of corruption.
We show that A-DPS can sometimes outperform models trained on clean data for several image restoration tasks in both speed and performance.
We extend the Ambient Diffusion framework to train MRI models with access only to Fourier subsampled multi-coil MRI measurements.
arXiv Detail & Related papers (2024-03-13T17:28:20Z) - CMRxRecon: An open cardiac MRI dataset for the competition of
accelerated image reconstruction [62.61209705638161]
There has been growing interest in deep learning-based CMR imaging algorithms.
Deep learning methods require large training datasets.
This dataset includes multi-contrast, multi-view, multi-slice and multi-coil CMR imaging data from 300 subjects.
arXiv Detail & Related papers (2023-09-19T15:14:42Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
Resting-state MRI functional (rs-fMRI) is increasingly employed in multi-site research to aid neurological disorder analysis.
Many methods have been proposed to reduce fMRI heterogeneity between source and target domains.
But acquiring source data is challenging due to concerns and/or data storage burdens in multi-site studies.
We design a source-free collaborative domain adaptation framework for fMRI analysis, where only a pretrained source model and unlabeled target data are accessible.
arXiv Detail & Related papers (2023-08-24T01:30:18Z) - Angular upsampling in diffusion MRI using contextual HemiHex
sub-sampling in q-space [0.0]
It is important to incorporate relevant context for the data to ensure that maximum prior information is provided for the AI model to infer the posterior.
In this paper, we introduce HemiHex subsampling to suggestively address training data sampling on q-space geometry.
Our proposed approach is a geometrically optimized regression technique which infers the unknown q-space thus addressing the limitations in the earlier studies.
arXiv Detail & Related papers (2022-11-01T03:13:07Z) - Self-Score: Self-Supervised Learning on Score-Based Models for MRI
Reconstruction [18.264778497591603]
This paper proposes a fully-sampled-data-free score-based diffusion model for MRI reconstruction.
It learns the fully sampled MR image prior in a self-supervised manner on undersampled data.
Experiments on the public dataset show that the proposed method outperforms existing self-supervised MRI reconstruction methods.
arXiv Detail & Related papers (2022-09-02T06:21:42Z) - Robust Segmentation of Brain MRI in the Wild with Hierarchical CNNs and
no Retraining [1.0499611180329802]
Retrospective analysis of brain MRI scans acquired in the clinic has the potential to enable neuroimaging studies with sample sizes much larger than those found in research datasets.
Recent advances in convolutional neural networks (CNNs) and domain randomisation for image segmentation may enable morphometry of clinical MRI at scale.
We show that SynthSeg is generally robust, but frequently falters on scans with low signal-to-noise ratio or poor tissue contrast.
We propose SynthSeg+, a novel method that greatly mitigates these problems using a hierarchy of conditional segmentation and denoising CNNs.
arXiv Detail & Related papers (2022-03-03T19:18:28Z) - Unsupervised MRI Reconstruction via Zero-Shot Learned Adversarial
Transformers [0.0]
We introduce a novel unsupervised MRI reconstruction method based on zero-Shot Learned Adrial TransformERs (SLATER)
A zero-shot reconstruction is performed on undersampled test data, where inference is performed by optimizing network parameters.
Experiments on brain MRI datasets clearly demonstrate the superior performance of SLATER against several state-of-the-art unsupervised methods.
arXiv Detail & Related papers (2021-05-15T02:01:21Z) - Learning Energy-Based Models by Diffusion Recovery Likelihood [61.069760183331745]
We present a diffusion recovery likelihood method to tractably learn and sample from a sequence of energy-based models.
After training, synthesized images can be generated by the sampling process that initializes from Gaussian white noise distribution.
On unconditional CIFAR-10 our method achieves FID 9.58 and inception score 8.30, superior to the majority of GANs.
arXiv Detail & Related papers (2020-12-15T07:09:02Z) - Robust Compressed Sensing using Generative Models [98.64228459705859]
In this paper we propose an algorithm inspired by the Median-of-Means (MOM)
Our algorithm guarantees recovery for heavy-tailed data, even in the presence of outliers.
arXiv Detail & Related papers (2020-06-16T19:07:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.