Thermofield dynamics: Quantum Chaos versus Decoherence
- URL: http://arxiv.org/abs/2008.06444v1
- Date: Fri, 14 Aug 2020 16:07:56 GMT
- Title: Thermofield dynamics: Quantum Chaos versus Decoherence
- Authors: Zhenyu Xu, Aurelia Chenu, Toma\v{z} Prosen, Adolfo del Campo
- Abstract summary: Quantum chaos imposes universal spectral signatures that govern the thermofield dynamics of a manybody system.
Sources of decoherence give rise to a nonunitary evolution and result in information loss.
The interplay between signatures of quantum chaos and information loss is determined by the competition among the decoherence, dip and plateau characteristic times.
- Score: 4.771483851099131
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum chaos imposes universal spectral signatures that govern the
thermofield dynamics of a many-body system in isolation. The fidelity between
the initial and time-evolving thermofield double states exhibits as a function
of time a decay, dip, ramp and plateau. Sources of decoherence give rise to a
nonunitary evolution and result in information loss. Energy dephasing gradually
suppresses quantum noise fluctuations and the dip associated with spectral
correlations. Decoherence further delays the appearance of the dip and shortens
the span of the linear ramp associated with chaotic behavior. The interplay
between signatures of quantum chaos and information loss is determined by the
competition among the decoherence, dip and plateau characteristic times, as
demoonstrated in the stochastic Sachdev-Ye-Kitaev model.
Related papers
- Signatures of quantum chaos and complexity in the Ising model on random graphs [0.0]
We investigate quantum chaos and complexity in the quantum annealing Ising model on random ErdHos-R'enyi graphs.<n>We study deep thermalization of a quantum state ensemble as an indicator of chaotic dynamics.<n>We also investigate a quantum analogue of the Mpemba effect, where initially "hotter" states can thermalize anomalously fast.
arXiv Detail & Related papers (2025-08-04T18:43:43Z) - Tripartite Entanglement in Multimode Cavity Quantum Electrodynamics [37.69303106863453]
We numerically investigate the generation and dynamics of tripartite entanglement among qubits in multimode cavity quantum electrodynamics.<n>Our results hold promise for the development of entanglement-based quantum networking protocols and quantum memories.
arXiv Detail & Related papers (2025-07-16T03:53:14Z) - Transient and steady-state chaos in dissipative quantum systems [0.0]
Dissipative quantum chaos plays a central role in the characterization and control of information scrambling, non-unitary evolution, and thermalization.<n>We introduce a random matrix toy model and show that Ginibre spectral statistics signals short-time chaos rather than steady-state chaos.
arXiv Detail & Related papers (2025-06-05T18:00:13Z) - Time-dependent Neural Galerkin Method for Quantum Dynamics [42.81677042059531]
We introduce a classical computational method for quantum dynamics that relies on a global-in-time variational principle.
Our scheme computes the entire state trajectory over a finite time window by minimizing a loss function that enforces the Schr"odinger's equation.
We showcase the method by simulating global quantum quenches in the paradigmatic Transverse-Field Ising model in both 1D and 2D.
arXiv Detail & Related papers (2024-12-16T13:48:54Z) - Information scrambling and entanglement dynamics in Floquet Time Crystals [49.1574468325115]
We study the dynamics of out-of-time-ordered correlators (OTOCs) and entanglement of entropy as measures of information propagation in disordered systems.
arXiv Detail & Related papers (2024-11-20T17:18:42Z) - Chaotic and quantum dynamics in driven-dissipative bosonic chains [0.0]
Thermalization in quantum many-body systems unfolds over timescales governed by intrinsic relaxation mechanisms.<n>We investigate this phenomenon in the nonequilibrium steady state (NESS) of a Bose-Hubbard chain subject to coherent driving and dissipation at its boundaries.<n>We argue that similar mechanisms are likely to emerge in a broad class of extended driven-dissipative systems.
arXiv Detail & Related papers (2024-09-18T18:00:00Z) - Understanding multiple timescales in quantum dissipative dynamics:
Insights from quantum trajectories [0.0]
We show that open quantum systems with nearly degenerate energy levels exhibit long-lived metastable states in the approach to equilibrium.
This is a result of dramatic separation of timescales due to differences between Liouvillian eigenvalues.
arXiv Detail & Related papers (2024-02-07T02:06:51Z) - Signatures of quantum phases in a dissipative system [13.23575512928342]
Lindbladian formalism has been all-pervasive to interpret non-equilibrium steady states of quantum many-body systems.
We study the fate of free fermionic and superconducting phases in a dissipative one-dimensional Kitaev model.
arXiv Detail & Related papers (2023-12-28T17:53:26Z) - Superexponential behaviors of out-of-time ordered correlators and
Loschmidt echo in a non-Hermitian interacting system [4.144331441157407]
We study the dynamics of quantum chaos and quantum scrambling under many-body interaction effects.
Our findings suggest a kind of fastest divergence of two nearby quantum states.
arXiv Detail & Related papers (2023-05-20T09:33:14Z) - Indication of critical scaling in time during the relaxation of an open
quantum system [34.82692226532414]
Phase transitions correspond to the singular behavior of physical systems in response to continuous control parameters like temperature or external fields.
Near continuous phase transitions, associated with the divergence of a correlation length, universal power-law scaling behavior with critical exponents independent of microscopic system details is found.
arXiv Detail & Related papers (2022-08-10T05:59:14Z) - Quantum chaos and thermalization in the two-mode Dicke model [77.34726150561087]
We discuss the onset of quantum chaos and thermalization in the two-mode Dicke model.
The two-mode Dicke model exhibits normal to superradiant quantum phase transition.
We show that the temporal fluctuations of the expectation value of the collective spin observable around its average are small and decrease with the effective system size.
arXiv Detail & Related papers (2022-07-08T11:16:29Z) - Dynamical scaling symmetry and asymptotic quantum correlations for
time-dependent scalar fields [0.0]
In time-independent quantum systems, entanglement entropy possesses an inherent scaling symmetry that the energy of the system does not have.
We show that such systems have dynamical scaling symmetry that leaves the evolution of various measures of quantum correlations invariant.
arXiv Detail & Related papers (2022-05-26T13:20:46Z) - Out-of-time-order correlator in the quantum Rabi model [62.997667081978825]
We show that out-of-time-order correlator derived from the Loschmidt echo signal quickly saturates in the normal phase.
We show that the effective time-averaged dimension of the quantum Rabi system can be large compared to the spin system size.
arXiv Detail & Related papers (2022-01-17T10:56:57Z) - Quantum correlations of localized atomic excitations in a disordered
atomic chain [0.0]
Atom-waveguide interface mediates significant and long-range light-matter interactions.
We theoretically investigate the excitation localization of atomic excitations under strong position disorders.
arXiv Detail & Related papers (2021-10-21T08:49:08Z) - Fractal, logarithmic and volume-law entangled non-thermal steady states
via spacetime duality [0.0]
We show how a duality transformation between space and time on one hand, and unitarity and non-unitarity on the other, can be used to realize steady state phases of non-unitary dynamics.
In spacetime-duals of chaotic unitary circuits, this mapping allows us to uncover a non-thermal volume-law entangled phase.
We also find novel steady state phases with emphfractal entanglement scaling.
arXiv Detail & Related papers (2021-03-11T18:57:29Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Dynamical quantum phase transition in a bosonic system with long-range
interactions [0.0]
We show that the emergence of a dynamical quantum phase transition hinges on the generation of a finite mass gap following the quench.
In general, we can define two distinct dynamical phases characterized by the finiteness of the post-quench mass gap.
The Loschmidt echo exhibits periodical nonanalytic cusps whenever the initial state has a vanishing mass gap and the final state has a finite mass gap.
arXiv Detail & Related papers (2020-11-11T10:04:50Z) - Feedback-induced instabilities and dynamics in the Jaynes-Cummings model [62.997667081978825]
We investigate the coherence and steady-state properties of the Jaynes-Cummings model subjected to time-delayed coherent feedback.
The introduced feedback qualitatively modifies the dynamical response and steady-state quantum properties of the system.
arXiv Detail & Related papers (2020-06-20T10:07:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.