Information scrambling and entanglement dynamics in Floquet Time Crystals
- URL: http://arxiv.org/abs/2411.13469v1
- Date: Wed, 20 Nov 2024 17:18:42 GMT
- Title: Information scrambling and entanglement dynamics in Floquet Time Crystals
- Authors: Himanshu Sahu, Fernando Iemini,
- Abstract summary: We study the dynamics of out-of-time-ordered correlators (OTOCs) and entanglement of entropy as measures of information propagation in disordered systems.
- Score: 49.1574468325115
- License:
- Abstract: We study the dynamics of out-of-time-ordered correlators (OTOCs) and entanglement of entropy as quantitative measures of information propagation in disordered many-body systems exhibiting Floquet time-crystal (FTC) phases. We find that OTOC spreads in the FTC with different characteristic timescales due to the existence of a preferred ``quasi-protected'' direction - denoted as $\ell$-bit direction - along which the spins stabilize their period-doubling magnetization for exponentially long times. While orthogonal to this direction the OTOC thermalizes as an usual MBL time-independent system (at stroboscopic times), along the $\ell$-bit direction the system features a more complex structure. The scrambling appears as a combination of an initially frozen dynamics (while in the stable period doubling magnetization time window) and a later logarithmic slow growth (over its decoherence regime) till full thermalization. Interestingly, in the late time regime, since the wavefront propagation of correlations has already settled through the whole chain, scrambling occurs at the same rate regardless of the distance between the spins, thus resulting in an overall envelope-like structure of all OTOCs, independent of their distance, merging into a single growth. Alongside, the entanglement entropy shows a logarithmic growth over all time, reflecting the slow dynamics up to a thermal volume-law saturation.
Related papers
- Chaos in Time: A Dissipative Continuous Quasi Time Crystals [0.0]
We introduce a Continuous Quasi Time Crystals (CQTC)
Despite being characterized by the presence of non-decaying oscillations, this phase does not retain its long-range order.
We investigate the connection between chaos and this quasi-crystalline phase using mean-field techniques.
arXiv Detail & Related papers (2024-11-11T19:00:06Z) - Scaling laws of the out-of-time-order correlators at the transition to
the spontaneous $\cal{PT}$-symmetry breaking in a Floquet system [3.121345642619774]
We investigate the dynamics of out-of-time-order correlators (OTOCs) in a non-Hermitian kicked rotor model.
In the unbroken phase of $mathcalPT$ symmetry, the OTOCs increase monotonically and eventually saturate with time.
Just beyond the phase transition points, the OTOCs increase in the power-laws of time, with the exponent larger than two.
arXiv Detail & Related papers (2023-02-20T06:44:13Z) - Indication of critical scaling in time during the relaxation of an open
quantum system [34.82692226532414]
Phase transitions correspond to the singular behavior of physical systems in response to continuous control parameters like temperature or external fields.
Near continuous phase transitions, associated with the divergence of a correlation length, universal power-law scaling behavior with critical exponents independent of microscopic system details is found.
arXiv Detail & Related papers (2022-08-10T05:59:14Z) - Quantum chaos and thermalization in the two-mode Dicke model [77.34726150561087]
We discuss the onset of quantum chaos and thermalization in the two-mode Dicke model.
The two-mode Dicke model exhibits normal to superradiant quantum phase transition.
We show that the temporal fluctuations of the expectation value of the collective spin observable around its average are small and decrease with the effective system size.
arXiv Detail & Related papers (2022-07-08T11:16:29Z) - Clean two-dimensional Floquet time-crystal [68.8204255655161]
We consider the two-dimensional quantum Ising model, in absence of disorder, subject to periodic imperfect global spin flips.
We show by a combination of exact diagonalization and tensor-network methods that the system can sustain a spontaneously broken discrete time-translation symmetry.
We observe a non-perturbative change in the decay rate of the order parameter, which is related to the long-lived stability of the magnetic domains in 2D.
arXiv Detail & Related papers (2022-05-10T13:04:43Z) - Tuning between continuous time crystals and many-body scars in
long-range XYZ spin chains [0.13764085113103217]
We investigate the possibility of a emphcontinuous time crystal (CTC) in undriven, energy-conserving systems exhibiting prethermalization.
We map out the dynamical phase diagram using numerical simulations based on exact diagonalization and time-dependent variational principle in the thermodynamic limit.
We identify a regime where QMBS and CTC order co-exist, and we discuss experimental protocols that reveal their similarities as well as key differences.
arXiv Detail & Related papers (2022-05-04T18:00:03Z) - Floquet time crystals in driven spin systems with all-to-all $p$-body
interactions [0.0]
We show the emergence of Floquet time crystal phases in the Floquet dynamics of periodically driven $p$-spin models.
We develop a framework to predict robust subharmonic response in classical area-preserving maps.
Our analysis reveals that the robustness of the time-crystal behavior is reduced as their period increases.
arXiv Detail & Related papers (2022-01-26T00:57:40Z) - Genuine Multipartite Correlations in a Boundary Time Crystal [56.967919268256786]
We study genuine multipartite correlations (GMC's) in a boundary time crystal (BTC)
We analyze both (i) the structure (orders) of GMC's among the subsystems, as well as (ii) their build-up dynamics for an initially uncorrelated state.
arXiv Detail & Related papers (2021-12-21T20:25:02Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Long-lived period-doubled edge modes of interacting and disorder-free
Floquet spin chains [68.8204255655161]
We show that even in the absence of disorder, and in the presence of bulk heating, $pi$ edge modes are long lived.
A tunneling estimate for the lifetime is obtained by mapping the stroboscopic time-evolution to dynamics of a single particle in Krylov subspace.
arXiv Detail & Related papers (2021-05-28T12:13:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.