Object Detection in the Context of Mobile Augmented Reality
- URL: http://arxiv.org/abs/2008.06655v1
- Date: Sat, 15 Aug 2020 05:15:00 GMT
- Title: Object Detection in the Context of Mobile Augmented Reality
- Authors: Xiang Li and Yuan Tian and Fuyao Zhang and Shuxue Quan and Yi Xu
- Abstract summary: We propose a novel approach that combines the geometric information from VIO with semantic information from object detectors to improve the performance of object detection on mobile devices.
Our approach includes three components: (1) an image orientation correction method, (2) a scale-based filtering approach, and (3) an online semantic map.
The results show that our approach can improve on the accuracy of generic object detectors by 12% on our dataset.
- Score: 16.49070406578342
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the past few years, numerous Deep Neural Network (DNN) models and
frameworks have been developed to tackle the problem of real-time object
detection from RGB images. Ordinary object detection approaches process
information from the images only, and they are oblivious to the camera pose
with regard to the environment and the scale of the environment. On the other
hand, mobile Augmented Reality (AR) frameworks can continuously track a
camera's pose within the scene and can estimate the correct scale of the
environment by using Visual-Inertial Odometry (VIO). In this paper, we propose
a novel approach that combines the geometric information from VIO with semantic
information from object detectors to improve the performance of object
detection on mobile devices. Our approach includes three components: (1) an
image orientation correction method, (2) a scale-based filtering approach, and
(3) an online semantic map. Each component takes advantage of the different
characteristics of the VIO-based AR framework. We implemented the AR-enhanced
features using ARCore and the SSD Mobilenet model on Android phones. To
validate our approach, we manually labeled objects in image sequences taken
from 12 room-scale AR sessions. The results show that our approach can improve
on the accuracy of generic object detectors by 12% on our dataset.
Related papers
- VirtualPainting: Addressing Sparsity with Virtual Points and
Distance-Aware Data Augmentation for 3D Object Detection [3.5259183508202976]
We present an innovative approach that involves the generation of virtual LiDAR points using camera images.
We also enhance these virtual points with semantic labels obtained from image-based segmentation networks.
Our approach offers a versatile solution that can be seamlessly integrated into various 3D frameworks and 2D semantic segmentation methods.
arXiv Detail & Related papers (2023-12-26T18:03:05Z) - Towards Generalizable Multi-Camera 3D Object Detection via Perspective
Debiasing [28.874014617259935]
Multi-Camera 3D Object Detection (MC3D-Det) has gained prominence with the advent of bird's-eye view (BEV) approaches.
We propose a novel method that aligns 3D detection with 2D camera plane results, ensuring consistent and accurate detections.
arXiv Detail & Related papers (2023-10-17T15:31:28Z) - Anyview: Generalizable Indoor 3D Object Detection with Variable Frames [63.51422844333147]
We present a novel 3D detection framework named AnyView for our practical applications.
Our method achieves both great generalizability and high detection accuracy with a simple and clean architecture.
arXiv Detail & Related papers (2023-10-09T02:15:45Z) - Adaptive Rotated Convolution for Rotated Object Detection [96.94590550217718]
We present Adaptive Rotated Convolution (ARC) module to handle rotated object detection problem.
In our ARC module, the convolution kernels rotate adaptively to extract object features with varying orientations in different images.
The proposed approach achieves state-of-the-art performance on the DOTA dataset with 81.77% mAP.
arXiv Detail & Related papers (2023-03-14T11:53:12Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
We propose a novel 3D detection framework that associates intact features for objects via domain adaptation.
We achieve new state-of-the-art performance on the KITTI 3D detection benchmark in both accuracy and speed.
arXiv Detail & Related papers (2022-08-24T16:54:38Z) - A Simple Baseline for Multi-Camera 3D Object Detection [94.63944826540491]
3D object detection with surrounding cameras has been a promising direction for autonomous driving.
We present SimMOD, a Simple baseline for Multi-camera Object Detection.
We conduct extensive experiments on the 3D object detection benchmark of nuScenes to demonstrate the effectiveness of SimMOD.
arXiv Detail & Related papers (2022-08-22T03:38:01Z) - Recent Trends in 2D Object Detection and Applications in Video Event
Recognition [0.76146285961466]
We discuss the pioneering works in object detection, followed by the recent breakthroughs that employ deep learning.
We highlight recent datasets for 2D object detection both in images and videos, and present a comparative performance summary of various state-of-the-art object detection techniques.
arXiv Detail & Related papers (2022-02-07T14:15:11Z) - Combining Local and Global Pose Estimation for Precise Tracking of
Similar Objects [2.861848675707602]
We present a multi-object 6D detection and tracking pipeline for potentially similar and non-textured objects.
A new network architecture, trained solely with synthetic images, allows simultaneous pose estimation of multiple objects.
We show how the system can be used in a real AR assistance application within the field of construction.
arXiv Detail & Related papers (2022-01-31T14:36:57Z) - You Better Look Twice: a new perspective for designing accurate
detectors with reduced computations [56.34005280792013]
BLT-net is a new low-computation two-stage object detection architecture.
It reduces computations by separating objects from background using a very lite first-stage.
Resulting image proposals are then processed in the second-stage by a highly accurate model.
arXiv Detail & Related papers (2021-07-21T12:39:51Z) - Visual Object Recognition in Indoor Environments Using Topologically
Persistent Features [2.2344764434954256]
Object recognition in unseen indoor environments remains a challenging problem for visual perception of mobile robots.
We propose the use of topologically persistent features, which rely on the objects' shape information, to address this challenge.
We implement the proposed method on a real-world robot to demonstrate its usefulness.
arXiv Detail & Related papers (2020-10-07T06:04:17Z) - Single View Metrology in the Wild [94.7005246862618]
We present a novel approach to single view metrology that can recover the absolute scale of a scene represented by 3D heights of objects or camera height above the ground.
Our method relies on data-driven priors learned by a deep network specifically designed to imbibe weakly supervised constraints from the interplay of the unknown camera with 3D entities such as object heights.
We demonstrate state-of-the-art qualitative and quantitative results on several datasets as well as applications including virtual object insertion.
arXiv Detail & Related papers (2020-07-18T22:31:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.