IAAO: Interactive Affordance Learning for Articulated Objects in 3D Environments
- URL: http://arxiv.org/abs/2504.06827v1
- Date: Wed, 09 Apr 2025 12:36:48 GMT
- Title: IAAO: Interactive Affordance Learning for Articulated Objects in 3D Environments
- Authors: Can Zhang, Gim Hee Lee,
- Abstract summary: We present IAAO, a framework that builds an explicit 3D model for intelligent agents to gain understanding of articulated objects in their environment through interaction.<n>We first build hierarchical features and label fields for each object state using 3D Gaussian Splatting (3DGS) by distilling mask features and view-consistent labels from multi-view images.<n>We then perform object- and part-level queries on the 3D Gaussian primitives to identify static and articulated elements, estimating global transformations and local articulation parameters along with affordances.
- Score: 56.85804719947
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work presents IAAO, a novel framework that builds an explicit 3D model for intelligent agents to gain understanding of articulated objects in their environment through interaction. Unlike prior methods that rely on task-specific networks and assumptions about movable parts, our IAAO leverages large foundation models to estimate interactive affordances and part articulations in three stages. We first build hierarchical features and label fields for each object state using 3D Gaussian Splatting (3DGS) by distilling mask features and view-consistent labels from multi-view images. We then perform object- and part-level queries on the 3D Gaussian primitives to identify static and articulated elements, estimating global transformations and local articulation parameters along with affordances. Finally, scenes from different states are merged and refined based on the estimated transformations, enabling robust affordance-based interaction and manipulation of objects. Experimental results demonstrate the effectiveness of our method.
Related papers
- Hierarchical Cross-Modal Alignment for Open-Vocabulary 3D Object Detection [45.68105299990119]
Open-vocabulary 3D object detection (OV-3DOD) aims at localizing and classifying novel objects beyond closed sets.<n>We propose a hierarchical framework, named HCMA, to simultaneously learn local object and global scene information for OV-3DOD.
arXiv Detail & Related papers (2025-03-10T17:55:22Z) - ArtGS: Building Interactable Replicas of Complex Articulated Objects via Gaussian Splatting [66.29782808719301]
Building articulated objects is a key challenge in computer vision.<n>Existing methods often fail to effectively integrate information across different object states.<n>We introduce ArtGS, a novel approach that leverages 3D Gaussians as a flexible and efficient representation.
arXiv Detail & Related papers (2025-02-26T10:25:32Z) - GREAT: Geometry-Intention Collaborative Inference for Open-Vocabulary 3D Object Affordance Grounding [53.42728468191711]
Open-Vocabulary 3D object affordance grounding aims to anticipate action possibilities'' regions on 3D objects with arbitrary instructions.<n>We propose GREAT (GeometRy-intEntion collAboraTive inference) for Open-Vocabulary 3D Object Affordance Grounding.
arXiv Detail & Related papers (2024-11-29T11:23:15Z) - SADG: Segment Any Dynamic Gaussian Without Object Trackers [39.77468734311312]
SADG, Segment Any Dynamic Gaussian Without Object Trackers, is a novel approach that combines dynamic Gaussian Splatting representation and semantic information without reliance on object IDs.<n>We learn semantically-aware features by leveraging masks generated from the Segment Anything Model (SAM) and utilizing our novel contrastive learning objective based on hard pixel mining.<n>We evaluate SADG on proposed benchmarks and demonstrate the superior performance of our approach in segmenting objects within dynamic scenes.
arXiv Detail & Related papers (2024-11-28T17:47:48Z) - Object-Oriented Material Classification and 3D Clustering for Improved Semantic Perception and Mapping in Mobile Robots [6.395242048226456]
We propose a complement-aware deep learning approach for RGB-D-based material classification built on top of an object-oriented pipeline.
We show a significant improvement in material classification and 3D clustering accuracy compared to state-of-the-art approaches for 3D semantic scene mapping.
arXiv Detail & Related papers (2024-07-08T16:25:01Z) - Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
We propose a generative Bayesian network to produce diverse synthetic scenes with real-world patterns.
A series of experiments robustly display our method's consistent superiority over existing state-of-the-art pre-training approaches.
arXiv Detail & Related papers (2024-06-17T07:43:53Z) - MMScan: A Multi-Modal 3D Scene Dataset with Hierarchical Grounded Language Annotations [55.022519020409405]
This paper builds the first largest ever multi-modal 3D scene dataset and benchmark with hierarchical grounded language annotations, MMScan.
The resulting multi-modal 3D dataset encompasses 1.4M meta-annotated captions on 109k objects and 7.7k regions as well as over 3.04M diverse samples for 3D visual grounding and question-answering benchmarks.
arXiv Detail & Related papers (2024-06-13T17:59:30Z) - SM$^3$: Self-Supervised Multi-task Modeling with Multi-view 2D Images
for Articulated Objects [24.737865259695006]
We propose a self-supervised interaction perception method, referred to as SM$3$, to model articulated objects.
By constructing 3D geometries and textures from the captured 2D images, SM$3$ achieves integrated optimization of movable part and joint parameters.
Evaluations demonstrate that SM$3$ surpasses existing benchmarks across various categories and objects, while its adaptability in real-world scenarios has been thoroughly validated.
arXiv Detail & Related papers (2024-01-17T11:15:09Z) - ROAM: Robust and Object-Aware Motion Generation Using Neural Pose
Descriptors [73.26004792375556]
This paper shows that robustness and generalisation to novel scene objects in 3D object-aware character synthesis can be achieved by training a motion model with as few as one reference object.
We leverage an implicit feature representation trained on object-only datasets, which encodes an SE(3)-equivariant descriptor field around the object.
We demonstrate substantial improvements in 3D virtual character motion and interaction quality and robustness to scenarios with unseen objects.
arXiv Detail & Related papers (2023-08-24T17:59:51Z) - TransRefer3D: Entity-and-Relation Aware Transformer for Fine-Grained 3D
Visual Grounding [15.617150859765024]
We exploit Transformer for its natural suitability on permutation-invariant 3D point clouds data.
We propose a TransRefer3D network to extract entity-and-relation aware multimodal context.
Our proposed model significantly outperforms existing approaches by up to 10.6%.
arXiv Detail & Related papers (2021-08-05T05:47:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.