論文の概要: Learning Disentangled Expression Representations from Facial Images
- arxiv url: http://arxiv.org/abs/2008.07001v2
- Date: Tue, 18 Aug 2020 06:58:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-28 09:15:00.721500
- Title: Learning Disentangled Expression Representations from Facial Images
- Title(参考訳): 顔画像からの異方性表現の学習
- Authors: Marah Halawa, Manuel W\"ollhaf, Eduardo Vellasques, Urko S\'anchez
Sanz, and Olaf Hellwich
- Abstract要約: 対向損失の定式化を用いて,顔画像の非交叉表現を学習する。
使用済みモデルは、単一タスクデータセットの学習を容易にし、60.53%の精度で表現認識の最先端性を改善する。
- 参考スコア(独自算出の注目度): 2.2509387878255818
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Face images are subject to many different factors of variation, especially in
unconstrained in-the-wild scenarios. For most tasks involving such images, e.g.
expression recognition from video streams, having enough labeled data is
prohibitively expensive. One common strategy to tackle such a problem is to
learn disentangled representations for the different factors of variation of
the observed data using adversarial learning. In this paper, we use a
formulation of the adversarial loss to learn disentangled representations for
face images. The used model facilitates learning on single-task datasets and
improves the state-of-the-art in expression recognition with an accuracy
of60.53%on the AffectNetdataset, without using any additional data.
- Abstract(参考訳): 顔画像には様々な変化要因があり、特に非制約の非制約のケースでは顕著である。
このような画像を含むほとんどのタスク、例えばビデオストリームからの表現認識では、十分なラベル付きデータを持つことは禁止的に高価である。
このような問題に取り組む一般的な戦略の1つは、逆学習を用いて観測データのばらつきの異なる要因について、絡み合った表現を学ぶことである。
本稿では,顔画像の非交叉表現を学習するために,対向損失の定式化を用いる。
使用済みモデルは、追加データを用いることなく、単一タスクデータセットの学習を容易にし、AffectNetdatasetで60.53%の精度で表現認識の最先端を改善する。
関連論文リスト
- LightFFDNets: Lightweight Convolutional Neural Networks for Rapid Facial Forgery Detection [0.0]
本研究では,Fake-Vs-Real-Faces [10]と140k Real and Fake Faces [61]データセットを用いた画像処理による偽造検出に焦点を当てた。
これらの画像を用いて偽造検出を行うために,2つの軽量ディープラーニングモデルを提案する。
提案した軽量ディープラーニングモデルは,顔画像の偽造を正確に,かつ効率的に検出できることが示されている。
論文 参考訳(メタデータ) (2024-11-18T18:44:10Z) - See or Guess: Counterfactually Regularized Image Captioning [32.82695612178604]
本稿では、因果推論を利用して、既存のモデルを介入作業に役立てる汎用画像キャプションフレームワークを提案する。
本手法は幻覚を効果的に低減し,画像への忠実さを向上し,小型および大規模の画像・テキスト・モデル間で高い可搬性を示す。
論文 参考訳(メタデータ) (2024-08-29T17:59:57Z) - Contrastive Learning of View-Invariant Representations for Facial
Expressions Recognition [27.75143621836449]
コントラスト学習に基づく新しいビュー不変FERフレームワークであるViewFXを提案する。
提案手法を2つの公開多視点顔表情認識データセット上で検証する。
論文 参考訳(メタデータ) (2023-11-12T14:05:09Z) - Multi-Domain Norm-referenced Encoding Enables Data Efficient Transfer
Learning of Facial Expression Recognition [62.997667081978825]
本稿では,表情認識における伝達学習のための生物学的メカニズムを提案する。
提案アーキテクチャでは,人間の脳が,頭部形状の異なる表情を自然に認識する方法について解説する。
本モデルでは, FERGデータセットの分類精度92.15%を極端に高いデータ効率で達成する。
論文 参考訳(メタデータ) (2023-04-05T09:06:30Z) - Effective Data Augmentation With Diffusion Models [65.09758931804478]
我々は、事前訓練されたテキスト・画像拡散モデルによりパラメータ化された画像・画像変換によるデータ拡張の多様性の欠如に対処する。
本手法は,市販の拡散モデルを用いて画像のセマンティクスを編集し,いくつかのラベル付き例から新しい視覚概念に一般化する。
本手法は,実世界の雑草認識タスクと数ショット画像分類タスクにおいて評価し,テスト領域における精度の向上を観察する。
論文 参考訳(メタデータ) (2023-02-07T20:42:28Z) - Context-driven Visual Object Recognition based on Knowledge Graphs [0.8701566919381223]
本稿では,知識グラフに符号化された外部文脈知識を用いて,ディープラーニング手法を強化する手法を提案する。
我々は、異なる文脈ビューが同じ画像データセットの学習対象表現に与える影響を調べるために、一連の実験を行った。
論文 参考訳(メタデータ) (2022-10-20T13:09:00Z) - CIAO! A Contrastive Adaptation Mechanism for Non-Universal Facial
Expression Recognition [80.07590100872548]
本稿では、顔エンコーダの最後の層に異なるデータセットの特定の感情特性を適応させるメカニズムであるContrastive Inhibitory Adaptati On(CIAO)を提案する。
CIAOは、非常にユニークな感情表現を持つ6つの異なるデータセットに対して、表情認識性能が改善されている。
論文 参考訳(メタデータ) (2022-08-10T15:46:05Z) - Semantic Diversity Learning for Zero-Shot Multi-label Classification [14.480713752871523]
本研究では,マルチラベルゼロショット学習のためのエンドツーエンドモデルトレーニングを提案する。
本研究では,主埋め込みベクトルを持つ埋め込み行列を用いて,調整された損失関数を用いて訓練する。
さらに, 学習中, 組込み行列の多様性を促進するために, 高い意味的多様性を示す損失関数画像サンプルの重み付けを提案する。
論文 参考訳(メタデータ) (2021-05-12T19:39:07Z) - Adversarial Semantic Data Augmentation for Human Pose Estimation [96.75411357541438]
本研究では,セマンティックデータ拡張法 (SDA) を提案する。
また,適応的セマンティックデータ拡張 (ASDA) を提案する。
最先端の結果は、挑戦的なベンチマークで得られます。
論文 参考訳(メタデータ) (2020-08-03T07:56:04Z) - Distilling Localization for Self-Supervised Representation Learning [82.79808902674282]
コントラスト学習は教師なし表現学習に革命をもたらした。
現在のコントラストモデルでは、前景オブジェクトのローカライズには効果がない。
本稿では,背景変化を学習するためのデータ駆動型手法を提案する。
論文 参考訳(メタデータ) (2020-04-14T16:29:42Z) - Joint Deep Learning of Facial Expression Synthesis and Recognition [97.19528464266824]
顔表情の合成と認識を効果的に行うための新しい統合深層学習法を提案する。
提案手法は, 2段階の学習手順を伴い, まず, 表情の異なる顔画像を生成するために, 表情合成生成対向ネットワーク (FESGAN) を事前訓練する。
実画像と合成画像間のデータバイアスの問題を軽減するために,新しい実データ誘導バックプロパゲーション(RDBP)アルゴリズムを用いたクラス内損失を提案する。
論文 参考訳(メタデータ) (2020-02-06T10:56:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。