Playing Catan with Cross-dimensional Neural Network
- URL: http://arxiv.org/abs/2008.07079v1
- Date: Mon, 17 Aug 2020 04:09:29 GMT
- Title: Playing Catan with Cross-dimensional Neural Network
- Authors: Quentin Gendre, Tomoyuki Kaneko
- Abstract summary: It is challenging to build AI agents by Reinforcement Learning (RL for short) without domain knowledge nors.
In this paper, we introduce cross-dimensional neural networks to handle a mixture of information sources and a wide variety of outputs, and empirically demonstrate that the network dramatically improves RL in Catan.
We also show that, for the first time, a RL agent can outperform jsettler, the best agent available.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Catan is a strategic board game having interesting properties, including
multi-player, imperfect information, stochastic, complex state space structure
(hexagonal board where each vertex, edge and face has its own features, cards
for each player, etc), and a large action space (including negotiation).
Therefore, it is challenging to build AI agents by Reinforcement Learning (RL
for short), without domain knowledge nor heuristics. In this paper, we
introduce cross-dimensional neural networks to handle a mixture of information
sources and a wide variety of outputs, and empirically demonstrate that the
network dramatically improves RL in Catan. We also show that, for the first
time, a RL agent can outperform jsettler, the best heuristic agent available.
Related papers
- Scaling Offline Model-Based RL via Jointly-Optimized World-Action Model Pretraining [49.730897226510095]
We introduce JOWA: Jointly-Reinforced World-Action model, an offline model-based RL agent pretrained on Atari games with 6 billion tokens data.
Our largest agent, with 150 million parameters, 78.9% human-level performance on pretrained games using only 10% subsampled offline data, outperforming existing state-of-the-art large-scale offline RL baselines by 31.6% on averange.
arXiv Detail & Related papers (2024-10-01T10:25:03Z) - Hokoff: Real Game Dataset from Honor of Kings and its Offline Reinforcement Learning Benchmarks [59.50879251101105]
We propose Hokoff, a comprehensive set of pre-collected datasets that covers offline RL and offline MARL.
This data is derived from Honor of Kings, a recognized Multiplayer Online Battle Arena (MOBA) game.
We also introduce a novel baseline algorithm tailored for the inherent hierarchical action space of the game.
arXiv Detail & Related papers (2024-08-20T05:38:50Z) - Centralized control for multi-agent RL in a complex Real-Time-Strategy
game [0.0]
Multi-agent Reinforcement learning (MARL) studies the behaviour of multiple learning agents that coexist in a shared environment.
MARL is more challenging than single-agent RL because it involves more complex learning dynamics.
This project provides the end-to-end experience of applying RL in the Lux AI v2 Kaggle competition.
arXiv Detail & Related papers (2023-04-25T17:19:05Z) - Reinforcement Learning Agents in Colonel Blotto [0.0]
We focus on a specific instance of agent-based models, which uses reinforcement learning (RL) to train the agent how to act in its environment.
We find that the RL agent handily beats a single opponent, and still performs quite well when the number of opponents are increased.
We also analyze the RL agent and look at what strategies it has arrived by looking at the actions that it has given the highest and lowest Q-values.
arXiv Detail & Related papers (2022-04-04T16:18:01Z) - Deep Policy Networks for NPC Behaviors that Adapt to Changing Design
Parameters in Roguelike Games [137.86426963572214]
Turn-based strategy games like Roguelikes, for example, present unique challenges to Deep Reinforcement Learning (DRL)
We propose two network architectures to better handle complex categorical state spaces and to mitigate the need for retraining forced by design decisions.
arXiv Detail & Related papers (2020-12-07T08:47:25Z) - DeepCrawl: Deep Reinforcement Learning for Turn-based Strategy Games [137.86426963572214]
We introduce DeepCrawl, a fully-playable Roguelike prototype for iOS and Android in which all agents are controlled by policy networks trained using Deep Reinforcement Learning (DRL)
Our aim is to understand whether recent advances in DRL can be used to develop convincing behavioral models for non-player characters in videogames.
arXiv Detail & Related papers (2020-12-03T13:53:29Z) - Using Graph Convolutional Networks and TD($\lambda$) to play the game of
Risk [0.0]
Risk is a 6 player game with significant randomness and a large game-tree complexity.
Previous AIs focus on creating high-level handcrafted features determine agent decision making.
I create D.A.D, A Risk agent using temporal difference reinforcement learning to train a Deep Neural Network.
arXiv Detail & Related papers (2020-09-10T18:47:08Z) - The NetHack Learning Environment [79.06395964379107]
We present the NetHack Learning Environment (NLE), a procedurally generated rogue-like environment for Reinforcement Learning research.
We argue that NetHack is sufficiently complex to drive long-term research on problems such as exploration, planning, skill acquisition, and language-conditioned RL.
We demonstrate empirical success for early stages of the game using a distributed Deep RL baseline and Random Network Distillation exploration.
arXiv Detail & Related papers (2020-06-24T14:12:56Z) - Learning to Play No-Press Diplomacy with Best Response Policy Iteration [31.367850729299665]
We apply deep reinforcement learning methods to Diplomacy, a 7-player board game.
We show that our agents convincingly outperform the previous state-of-the-art, and game theoretic equilibrium analysis shows that the new process yields consistent improvements.
arXiv Detail & Related papers (2020-06-08T14:33:31Z) - Deep Reinforcement Learning for FlipIt Security Game [2.0624765454705654]
We describe a deep learning model in which agents adapt to different classes of opponents and learn the optimal counter-strategy.
We apply our model to FlipIt, a two-player security game in which both players, the attacker and the defender, compete for ownership of a shared resource.
Our model is a deep neural network combined with Q-learning and is trained to maximize the defender's time of ownership of the resource.
arXiv Detail & Related papers (2020-02-28T18:26:24Z) - Signaling in Bayesian Network Congestion Games: the Subtle Power of
Symmetry [66.82463322411614]
The paper focuses on the problem of optimal ex ante persuasive signaling schemes, showing that symmetry is a crucial property for its solution.
We show that an optimal ex ante persuasive scheme can be computed in time when players are symmetric and have affine cost functions.
arXiv Detail & Related papers (2020-02-12T19:38:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.