論文の概要: A Survey of Deep Learning for Data Caching in Edge Network
- arxiv url: http://arxiv.org/abs/2008.07235v1
- Date: Mon, 17 Aug 2020 12:02:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-28 04:27:47.522465
- Title: A Survey of Deep Learning for Data Caching in Edge Network
- Title(参考訳): エッジネットワークにおけるデータキャッシュの深層学習に関する調査
- Authors: Yantong Wang, Vasilis Friderikos
- Abstract要約: 本稿では,エッジネットワークにおけるデータキャッシングにおけるディープラーニングの利用について要約する。
まず、コンテンツキャッシングにおける典型的な研究トピックを概説し、ネットワーク階層構造に基づく分類を定式化する。
次に、教師なし学習から教師なし学習、強化学習まで、多くの重要なディープラーニングアルゴリズムが提示される。
- 参考スコア(独自算出の注目度): 1.9798034349981157
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The concept of edge caching provision in emerging 5G and beyond mobile
networks is a promising method to deal both with the traffic congestion problem
in the core network as well as reducing latency to access popular content. In
that respect end user demand for popular content can be satisfied by
proactively caching it at the network edge, i.e, at close proximity to the
users. In addition to model based caching schemes learning-based edge caching
optimizations has recently attracted significant attention and the aim
hereafter is to capture these recent advances for both model based and data
driven techniques in the area of proactive caching. This paper summarizes the
utilization of deep learning for data caching in edge network. We first outline
the typical research topics in content caching and formulate a taxonomy based
on network hierarchical structure. Then, a number of key types of deep learning
algorithms are presented, ranging from supervised learning to unsupervised
learning as well as reinforcement learning. Furthermore, a comparison of
state-of-the-art literature is provided from the aspects of caching topics and
deep learning methods. Finally, we discuss research challenges and future
directions of applying deep learning for caching
- Abstract(参考訳): 新興の5gネットワークとbeyond mobileネットワークにおけるエッジキャッシングプロビジョニングの概念は、コアネットワークの渋滞問題と人気コンテンツへのアクセス遅延の低減の両方に対処する有望な方法である。
したがって、ユーザに近いネットワークエッジ、すなわちネットワークエッジに積極的にキャッシュすることで、人気コンテンツに対するエンドユーザの要求を満たすことができる。
モデルベースのキャッシングスキームに加えて、最近、学習ベースのエッジキャッシングの最適化が注目され、これからの目標は、モデルベースとデータ駆動技術の両方の、積極的なキャッシングの分野での最近の進歩を捉えることである。
本稿では,エッジネットワークにおけるデータキャッシュにおけるディープラーニングの利用について要約する。
まず、コンテンツキャッシングにおける典型的な研究トピックを概説し、ネットワーク階層構造に基づく分類を定式化する。
そして、教師付き学習から教師なし学習、強化学習まで、いくつかの重要なディープラーニングアルゴリズムが提示される。
さらに,キャッシングトピックとディープラーニング手法の観点から,最先端文献の比較を行った。
最後に,キャッシュにディープラーニングを適用する研究課題と今後の方向性について論じる。
関連論文リスト
- A Learning-Based Caching Mechanism for Edge Content Delivery [2.412158290827225]
5GネットワークとIoT(Internet of Things)の台頭により、ネットワークのエッジはますます拡大している。
このシフトは、特に限られたキャッシュストレージとエッジにおける多様な要求パターンのために、ユニークな課題をもたらす。
HR-Cacheは、ハザードレート(HR)順序付けの原則に基づく学習ベースのキャッシュフレームワークである。
論文 参考訳(メタデータ) (2024-02-05T08:06:03Z) - Deep networks for system identification: a Survey [56.34005280792013]
システム識別は、入力出力データから動的システムの数学的記述を学習する。
同定されたモデルの主な目的は、以前の観測から新しいデータを予測することである。
我々は、フィードフォワード、畳み込み、リカレントネットワークなどの文献で一般的に採用されているアーキテクチャについて論じる。
論文 参考訳(メタデータ) (2023-01-30T12:38:31Z) - Accelerating Deep Learning Classification with Error-controlled
Approximate-key Caching [72.50506500576746]
我々は、近似キーキャッシングと名付けた新しいキャッシングパラダイムを提案する。
近似キャッシュはDL推論の負荷を軽減し、システムのスループットを向上するが、近似誤差を導入する。
我々は古典的なLRUと理想的なキャッシュのキャッシュシステム性能を解析的にモデル化し、期待される性能のトレース駆動評価を行い、提案手法の利点を最先端の類似キャッシュと比較した。
論文 参考訳(メタデータ) (2021-12-13T13:49:11Z) - Semi-supervised Network Embedding with Differentiable Deep Quantisation [81.49184987430333]
我々はネットワーク埋め込みのための微分可能な量子化法であるd-SNEQを開発した。
d-SNEQは、学習された量子化符号にリッチな高次情報を与えるためにランク損失を組み込む。
トレーニング済みの埋め込みのサイズを大幅に圧縮できるため、ストレージのフットプリントが減少し、検索速度が向上する。
論文 参考訳(メタデータ) (2021-08-20T11:53:05Z) - A Comprehensive Survey on Community Detection with Deep Learning [93.40332347374712]
コミュニティは、ネットワーク内の他のコミュニティと異なるメンバーの特徴と接続を明らかにする。
この調査は、最先端の手法の様々なカテゴリをカバーする新しい分類法を考案し、提案する。
ディープニューラルネットワーク(Deep Neural Network)は、畳み込みネットワーク(convolutional network)、グラフアテンションネットワーク( graph attention network)、生成的敵ネットワーク(generative adversarial network)、オートエンコーダ(autoencoder)に分けられる。
論文 参考訳(メタデータ) (2021-05-26T14:37:07Z) - A Survey on Reinforcement Learning-Aided Caching in Mobile Edge Networks [12.470038211838363]
モバイルネットワークは、データ量とユーザ密度が大幅に増加している。
この問題を軽減する効率的な手法は、エッジネットワークノードのキャッシュを利用してデータをユーザに近づけることである。
機械学習とワイヤレスネットワークの融合は、ネットワーク最適化に有効な手段を提供する。
論文 参考訳(メタデータ) (2021-05-12T10:30:56Z) - Caching Placement and Resource Allocation for Cache-Enabling UAV NOMA
Networks [87.6031308969681]
本稿では,非直交多重アクセス(NOMA)をサポートした大規模アクセス機能を有する無人航空機(UAV)セルネットワークについて検討する。
コンテンツ配信遅延最小化のための長期キャッシュ配置と資源配分最適化問題をマルコフ決定プロセス(MDP)として定式化する。
そこで我々は,UAVがemphsoft $varepsilon$-greedy戦略を用いて行動の学習と選択を行い,行動と状態の最適な一致を探索する,Qラーニングに基づくキャッシュ配置とリソース割り当てアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-08-12T08:33:51Z) - Applying Machine Learning Techniques for Caching in Edge Networks: A
Comprehensive Survey [3.985352415162327]
機械学習技術は、ユーザの好みに基づいてコンテンツの人気を予測するために応用できる。
これらの機械学習の応用は、エッジネットワークの関連コンテンツを特定するのに役立つ。
本稿では,エッジネットワークにおけるネットワーク内キャッシュに対する機械学習手法の適用について検討する。
論文 参考訳(メタデータ) (2020-06-21T09:31:56Z) - Reinforcement Learning for Caching with Space-Time Popularity Dynamics [61.55827760294755]
キャッシングは次世代ネットワークにおいて重要な役割を果たすと想定されている。
コンテンツをインテリジェントにプリフェッチし、保存するためには、キャッシュノードは、何といつキャッシュするかを学ばなければならない。
本章では、近似キャッシングポリシー設計のための多目的強化学習に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2020-05-19T01:23:51Z) - PA-Cache: Evolving Learning-Based Popularity-Aware Content Caching in
Edge Networks [14.939950326112045]
本稿では,エッジネットワークにおけるPAキャッシュという,学習ベースのコンテンツキャッシュポリシを提案する。
時間変化のあるコンテンツの人気を適応的に学習し、キャッシュが満杯になったときにどのコンテンツを置き換えるべきかを決定する。
提案するPAキャッシュの性能を,大規模オンラインビデオオンデマンドサービスプロバイダによる実世界のトレースで広範囲に評価した。
論文 参考訳(メタデータ) (2020-02-20T15:38:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。