Building a Framework for Indigenous Astronomy Collaboration: Native
Skywatchers, Indigenous Scientific Knowledge Systems, and The Bell Museum
- URL: http://arxiv.org/abs/2008.07270v1
- Date: Wed, 12 Aug 2020 12:32:32 GMT
- Title: Building a Framework for Indigenous Astronomy Collaboration: Native
Skywatchers, Indigenous Scientific Knowledge Systems, and The Bell Museum
- Authors: Annette S. Lee, Sally Brummel, Kaitlin Ehret, Sarah Komperud, Thaddeus
LaCoursiere
- Abstract summary: This document is the process of building a framework for developing Indigenous astronomy programming.
It can be a model for other institutions that may be interested in collaborating with Indigenous communities.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hundreds of years ago, colonization happened. Today we are still living out
the ripple effects of this history. How does this relate to science, informal
science education, and institutions that promote science communication? What
obligations or considerations should a science museum have before integrating
Indigenous knowledge into their existing programming? Presented in this
document is the process of building a framework intended to provide a roadmap
for developing Indigenous astronomy programming which can be a model for other
institutions that may be interested in collaborating with Indigenous
communities.
Related papers
- Many Heads Are Better Than One: Improved Scientific Idea Generation by A LLM-Based Multi-Agent System [62.832818186789545]
Virtual Scientists (VirSci) is a multi-agent system designed to mimic the teamwork inherent in scientific research.
VirSci organizes a team of agents to collaboratively generate, evaluate, and refine research ideas.
We show that this multi-agent approach outperforms the state-of-the-art method in producing novel scientific ideas.
arXiv Detail & Related papers (2024-10-12T07:16:22Z) - SciInstruct: a Self-Reflective Instruction Annotated Dataset for Training Scientific Language Models [57.96527452844273]
We introduce SciInstruct, a suite of scientific instructions for training scientific language models capable of college-level scientific reasoning.
We curated a diverse and high-quality dataset encompassing physics, chemistry, math, and formal proofs.
To verify the effectiveness of SciInstruct, we fine-tuned different language models with SciInstruct, i.e., ChatGLM3 (6B and 32B), Llama3-8B-Instruct, and Mistral-7B: MetaMath.
arXiv Detail & Related papers (2024-01-15T20:22:21Z) - Getting aligned on representational alignment [93.08284685325674]
We study the study of representational alignment in cognitive science, neuroscience, and machine learning.
Despite their overlapping interests, there is limited knowledge transfer between these fields.
We propose a unifying framework that can serve as a common language for research on representational alignment.
arXiv Detail & Related papers (2023-10-18T17:47:58Z) - Large Language Models for Scientific Synthesis, Inference and
Explanation [56.41963802804953]
We show how large language models can perform scientific synthesis, inference, and explanation.
We show that the large language model can augment this "knowledge" by synthesizing from the scientific literature.
This approach has the further advantage that the large language model can explain the machine learning system's predictions.
arXiv Detail & Related papers (2023-10-12T02:17:59Z) - AI for Science: An Emerging Agenda [30.260160661295682]
This report documents the programme and the outcomes of Dagstuhl Seminar 22382 "Machine Learning for Science: Bridging Data-Driven and Mechanistic Modelling"
The transformative potential of AI stems from its widespread applicability across disciplines, and will only be achieved through integration across research domains.
Alongside technical advances, the next wave of progress in the field will come from building a community of machine learning researchers, domain experts, citizen scientists, and engineers.
arXiv Detail & Related papers (2023-03-07T20:21:43Z) - Astronomia ex machina: a history, primer, and outlook on neural networks
in astronomy [0.0]
We trace the evolution of connectionism in astronomy through its three waves.
We argue for the adoption of GPT-like foundation models fine-tuned for astronomical applications.
arXiv Detail & Related papers (2022-11-07T19:00:00Z) - BioJam Camp: toward justice through bioengineering and biodesign
co-learning with youth [0.0]
BioJam is a political, artistic, and educational project in which Bay Area artists, scientists, and educators collaborate with youth and communities of color to address historical exclusion of their communities in STEM fields and reframe what science can be.
arXiv Detail & Related papers (2022-11-01T21:10:56Z) - Modeling Information Change in Science Communication with Semantically
Matched Paraphrases [50.67030449927206]
SPICED is the first paraphrase dataset of scientific findings annotated for degree of information change.
SPICED contains 6,000 scientific finding pairs extracted from news stories, social media discussions, and full texts of original papers.
Models trained on SPICED improve downstream performance on evidence retrieval for fact checking of real-world scientific claims.
arXiv Detail & Related papers (2022-10-24T07:44:38Z) - KnowledgeShovel: An AI-in-the-Loop Document Annotation System for
Scientific Knowledge Base Construction [46.56643271476249]
KnowledgeShovel is an Al-in-the-Loop document annotation system for researchers to construct scientific knowledge bases.
The design of KnowledgeShovel introduces a multi-step multi-modalAI collaboration pipeline to improve data accuracy while reducing the human burden.
A follow-up user evaluation with 7 geoscience researchers shows that KnowledgeShovel can enable efficient construction of scientific knowledge bases with satisfactory accuracy.
arXiv Detail & Related papers (2022-10-06T11:38:18Z) - A Computational Inflection for Scientific Discovery [48.176406062568674]
We stand at the foot of a significant inflection in the trajectory of scientific discovery.
As society continues on its fast-paced digital transformation, so does humankind's collective scientific knowledge.
Computer science is poised to ignite a revolution in the scientific process itself.
arXiv Detail & Related papers (2022-05-04T11:36:54Z) - A Low-Cost Robot Science Kit for Education with Symbolic Regression for
Hypothesis Discovery and Validation [15.72286703649173]
Next generation of physical science involves robot scientists - autonomous physical science systems capable of experimental design, execution, and analysis in a closed loop.
To build and use these systems, the next generation workforce requires expertise in diverse areas including ML, control systems, measurement science, materials synthesis, decision theory, among others.
We present the next generation in science education, a kit for building a low-cost autonomous scientist.
arXiv Detail & Related papers (2022-04-08T17:25:28Z) - Towards Inclusive Practices with Indigenous Knowledge [0.0]
Astronomy across world cultures is rooted in Indigenous Knowledge.
We share models of partnering with indigenous communities involving Collaboration with Integrity to co-create an inclusive scientific enterprise on Earth and in space.
arXiv Detail & Related papers (2020-09-25T20:30:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.