Getting aligned on representational alignment
- URL: http://arxiv.org/abs/2310.13018v3
- Date: Tue, 26 Nov 2024 10:31:41 GMT
- Title: Getting aligned on representational alignment
- Authors: Ilia Sucholutsky, Lukas Muttenthaler, Adrian Weller, Andi Peng, Andreea Bobu, Been Kim, Bradley C. Love, Christopher J. Cueva, Erin Grant, Iris Groen, Jascha Achterberg, Joshua B. Tenenbaum, Katherine M. Collins, Katherine L. Hermann, Kerem Oktar, Klaus Greff, Martin N. Hebart, Nathan Cloos, Nikolaus Kriegeskorte, Nori Jacoby, Qiuyi Zhang, Raja Marjieh, Robert Geirhos, Sherol Chen, Simon Kornblith, Sunayana Rane, Talia Konkle, Thomas P. O'Connell, Thomas Unterthiner, Andrew K. Lampinen, Klaus-Robert Müller, Mariya Toneva, Thomas L. Griffiths,
- Abstract summary: We study the study of representational alignment in cognitive science, neuroscience, and machine learning.
Despite their overlapping interests, there is limited knowledge transfer between these fields.
We propose a unifying framework that can serve as a common language for research on representational alignment.
- Score: 93.08284685325674
- License:
- Abstract: Biological and artificial information processing systems form representations of the world that they can use to categorize, reason, plan, navigate, and make decisions. How can we measure the similarity between the representations formed by these diverse systems? Do similarities in representations then translate into similar behavior? If so, then how can a system's representations be modified to better match those of another system? These questions pertaining to the study of representational alignment are at the heart of some of the most promising research areas in contemporary cognitive science, neuroscience, and machine learning. In this Perspective, we survey the exciting recent developments in representational alignment research in the fields of cognitive science, neuroscience, and machine learning. Despite their overlapping interests, there is limited knowledge transfer between these fields, so work in one field ends up duplicated in another, and useful innovations are not shared effectively. To improve communication, we propose a unifying framework that can serve as a common language for research on representational alignment, and map several streams of existing work across fields within our framework. We also lay out open problems in representational alignment where progress can benefit all three of these fields. We hope that this paper will catalyze cross-disciplinary collaboration and accelerate progress for all communities studying and developing information processing systems.
Related papers
- Fairness and Bias Mitigation in Computer Vision: A Survey [61.01658257223365]
Computer vision systems are increasingly being deployed in high-stakes real-world applications.
There is a dire need to ensure that they do not propagate or amplify any discriminatory tendencies in historical or human-curated data.
This paper presents a comprehensive survey on fairness that summarizes and sheds light on ongoing trends and successes in the context of computer vision.
arXiv Detail & Related papers (2024-08-05T13:44:22Z) - Information Systems and Software Engineering: The Case for Convergence [1.14219428942199]
The Information Systems (IS) and Software Engineering (SE) fields share a remarkable number of similarities in their historical evolution to date.
An analysis of 10 years (2001-2010) of publications in the primary journals in both fields reveals a good deal of overlap in research topics.
This article seeks to encourage such interaction, and illustrates how this might usefully occur in the area of design.
arXiv Detail & Related papers (2024-02-06T17:55:42Z) - Empathy Detection from Text, Audiovisual, Audio or Physiological Signals: Task Formulations and Machine Learning Methods [5.7306786636466995]
Detecting empathy has potential applications in society, healthcare and education.
Despite being a broad and overlapping topic, the avenue of empathy detection leveraging Machine Learning remains underexplored.
We discuss challenges, research gaps and potential applications in the Affective Computing-based empathy domain.
arXiv Detail & Related papers (2023-10-30T08:34:12Z) - Fairness meets Cross-Domain Learning: a new perspective on Models and
Metrics [80.07271410743806]
We study the relationship between cross-domain learning (CD) and model fairness.
We introduce a benchmark on face and medical images spanning several demographic groups as well as classification and localization tasks.
Our study covers 14 CD approaches alongside three state-of-the-art fairness algorithms and shows how the former can outperform the latter.
arXiv Detail & Related papers (2023-03-25T09:34:05Z) - Vision+X: A Survey on Multimodal Learning in the Light of Data [64.03266872103835]
multimodal machine learning that incorporates data from various sources has become an increasingly popular research area.
We analyze the commonness and uniqueness of each data format mainly ranging from vision, audio, text, and motions.
We investigate the existing literature on multimodal learning from both the representation learning and downstream application levels.
arXiv Detail & Related papers (2022-10-05T13:14:57Z) - Empathetic Conversational Systems: A Review of Current Advances, Gaps,
and Opportunities [2.741266294612776]
A growing number of studies have recognized the benefits of empathy and started to incorporate empathy in conversational systems.
This paper examines this rapidly growing field using five review dimensions.
arXiv Detail & Related papers (2022-05-09T05:19:48Z) - Neural Fields in Visual Computing and Beyond [54.950885364735804]
Recent advances in machine learning have created increasing interest in solving visual computing problems using coordinate-based neural networks.
neural fields have seen successful application in the synthesis of 3D shapes and image, animation of human bodies, 3D reconstruction, and pose estimation.
This report provides context, mathematical grounding, and an extensive review of literature on neural fields.
arXiv Detail & Related papers (2021-11-22T18:57:51Z) - This is not the Texture you are looking for! Introducing Novel
Counterfactual Explanations for Non-Experts using Generative Adversarial
Learning [59.17685450892182]
counterfactual explanation systems try to enable a counterfactual reasoning by modifying the input image.
We present a novel approach to generate such counterfactual image explanations based on adversarial image-to-image translation techniques.
Our results show that our approach leads to significantly better results regarding mental models, explanation satisfaction, trust, emotions, and self-efficacy than two state-of-the art systems.
arXiv Detail & Related papers (2020-12-22T10:08:05Z) - Contrastive Representation Learning: A Framework and Review [2.7393821783237184]
The origins of Contrastive Learning date as far back as the 1990s and its development has spanned across many fields.
We propose a general Contrastive Representation Learning framework that simplifies and unifies many different contrastive learning methods.
Examples of how contrastive learning has been applied in computer vision, natural language processing, audio processing, and others, as well as in Reinforcement Learning are also presented.
arXiv Detail & Related papers (2020-10-10T22:46:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.