Towards Smart Sustainable Cities: Addressing semantic heterogeneity in
building management systems using discriminative models
- URL: http://arxiv.org/abs/2008.07414v1
- Date: Mon, 17 Aug 2020 15:39:11 GMT
- Title: Towards Smart Sustainable Cities: Addressing semantic heterogeneity in
building management systems using discriminative models
- Authors: Chidubem Iddianozie, Paulito Palmes
- Abstract summary: Building Management Systems (BMS) are crucial in the drive towards smart sustainable cities.
In this paper, we address the problem of inferring the semantics of IoT devices using machine learning models.
Our study highlights the potential of Image Encoded Time Series (IETS) as a robust alternative to statistical feature-based inference methods.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Building Management Systems (BMS) are crucial in the drive towards smart
sustainable cities. This is due to the fact that they have been effective in
significantly reducing the energy consumption of buildings. A typical BMS is
composed of smart devices that communicate with one another in order to achieve
their purpose. However, the heterogeneity of these devices and their associated
meta-data impede the deployment of solutions that depend on the interactions
among these devices. Nonetheless, automatically inferring the semantics of
these devices using data-driven methods provides an ideal solution to the
problems brought about by this heterogeneity. In this paper, we undertake a
multi-dimensional study to address the problem of inferring the semantics of
IoT devices using machine learning models. Using two datasets with over 67
million data points collected from IoT devices, we developed discriminative
models that produced competitive results. Particularly, our study highlights
the potential of Image Encoded Time Series (IETS) as a robust alternative to
statistical feature-based inference methods. Leveraging just a fraction of the
data required by feature-based methods, our evaluations show that this encoding
competes with and even outperforms traditional methods in many cases.
Related papers
- Efficient Federated Intrusion Detection in 5G ecosystem using optimized BERT-based model [0.7100520098029439]
5G offers advanced services, supporting applications such as intelligent transportation, connected healthcare, and smart cities within the Internet of Things (IoT)
These advancements introduce significant security challenges, with increasingly sophisticated cyber-attacks.
This paper proposes a robust intrusion detection system (IDS) using federated learning and large language models (LLMs)
arXiv Detail & Related papers (2024-09-28T15:56:28Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Prototype of deployment of Federated Learning with IoT devices [0.0]
A huge amount of the resource desired, data, is stored in mobile devices, sensors and other Internet of Things (IoT) devices.
At the same time these devices do not have enough data or computational capacity to train good models.
Federated Learning (FL) provides an innovative solution that allows devices to learn in a collaborative way.
arXiv Detail & Related papers (2023-11-24T10:37:30Z) - Filling the Missing: Exploring Generative AI for Enhanced Federated
Learning over Heterogeneous Mobile Edge Devices [72.61177465035031]
We propose a generative AI-empowered federated learning to address these challenges by leveraging the idea of FIlling the MIssing (FIMI) portion of local data.
Experiment results demonstrate that FIMI can save up to 50% of the device-side energy to achieve the target global test accuracy.
arXiv Detail & Related papers (2023-10-21T12:07:04Z) - Ensemble Learning based Anomaly Detection for IoT Cybersecurity via
Bayesian Hyperparameters Sensitivity Analysis [2.3226893628361682]
Internet of Things (IoT) integrates more than billions of intelligent devices over the globe with the capability of communicating with other connected devices.
Data collected by IoT contain a tremendous amount of information for anomaly detection.
In this paper, we present a study on using ensemble machine learning methods for enhancing IoT cybersecurity via anomaly detection.
arXiv Detail & Related papers (2023-07-20T05:23:49Z) - Semantic Information Marketing in The Metaverse: A Learning-Based
Contract Theory Framework [68.8725783112254]
We address the problem of designing incentive mechanisms by a virtual service provider (VSP) to hire sensing IoT devices to sell their sensing data.
Due to the limited bandwidth, we propose to use semantic extraction algorithms to reduce the delivered data by the sensing IoT devices.
We propose a novel iterative contract design and use a new variant of multi-agent reinforcement learning (MARL) to solve the modelled multi-dimensional contract problem.
arXiv Detail & Related papers (2023-02-22T15:52:37Z) - Application of federated learning techniques for arrhythmia
classification using 12-lead ECG signals [0.11184789007828977]
This work uses a Federated Learning (FL) privacy-preserving methodology to train AI models over heterogeneous sets of high-definition ECG.
We demonstrated comparable performance to models trained using CL, IID, and non-IID approaches.
arXiv Detail & Related papers (2022-08-23T14:21:16Z) - Asynchronous Parallel Incremental Block-Coordinate Descent for
Decentralized Machine Learning [55.198301429316125]
Machine learning (ML) is a key technique for big-data-driven modelling and analysis of massive Internet of Things (IoT) based intelligent and ubiquitous computing.
For fast-increasing applications and data amounts, distributed learning is a promising emerging paradigm since it is often impractical or inefficient to share/aggregate data.
This paper studies the problem of training an ML model over decentralized systems, where data are distributed over many user devices.
arXiv Detail & Related papers (2022-02-07T15:04:15Z) - IoT-based Route Recommendation for an Intelligent Waste Management
System [61.04795047897888]
This work proposes an intelligent approach to route recommendation in an IoT-enabled waste management system given spatial constraints.
Our solution is based on a multiple-level decision-making process in which bins' status and coordinates are taken into account.
arXiv Detail & Related papers (2022-01-01T12:36:22Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - A Federated Learning Approach to Anomaly Detection in Smart Buildings [5.177947445379688]
We formulate the anomaly detection problem in a federated learning setting by leveraging the multi-task learning paradigm.
We propose a novel privacy-by-design federated learning model using a stacked long short-time memory (LSTM) model.
We demonstrate that it is more than twice as fast during training convergence compared to the centralized LSTM.
arXiv Detail & Related papers (2020-10-20T14:06:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.