Prototype of deployment of Federated Learning with IoT devices
- URL: http://arxiv.org/abs/2311.14401v1
- Date: Fri, 24 Nov 2023 10:37:30 GMT
- Title: Prototype of deployment of Federated Learning with IoT devices
- Authors: Pablo Garc\'ia Santaclara and Ana Fern\'andez Vilas and Rebeca P.
D\'iaz Redondo
- Abstract summary: A huge amount of the resource desired, data, is stored in mobile devices, sensors and other Internet of Things (IoT) devices.
At the same time these devices do not have enough data or computational capacity to train good models.
Federated Learning (FL) provides an innovative solution that allows devices to learn in a collaborative way.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the age of technology, data is an increasingly important resource. This
importance is growing in the field of Artificial Intelligence (AI), where sub
fields such as Machine Learning (ML) need more and more data to achieve better
results. Internet of Things (IoT) is the connection of sensors and smart
objects to collect and exchange data, in addition to achieving many other
tasks. A huge amount of the resource desired, data, is stored in mobile
devices, sensors and other Internet of Things (IoT) devices, but remains there
due to data protection restrictions. At the same time these devices do not have
enough data or computational capacity to train good models. Moreover,
transmitting, storing and processing all this data on a centralised server is
problematic. Federated Learning (FL) provides an innovative solution that
allows devices to learn in a collaborative way. More importantly, it
accomplishes this without violating data protection laws. FL is currently
growing, and there are several solutions that implement it. This article
presents a prototype of a FL solution where the IoT devices used were raspberry
pi boards. The results compare the performance of a solution of this type with
those obtained in traditional approaches. In addition, the FL solution
performance was tested in a hostile environment. A convolutional neural network
(CNN) and a image data set were used. The results show the feasibility and
usability of these techniques, although in many cases they do not reach the
performance of traditional approaches.
Related papers
- Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Federated Learning for 6G: Paradigms, Taxonomy, Recent Advances and
Insights [52.024964564408]
This paper examines the added-value of implementing Federated Learning throughout all levels of the protocol stack.
It presents important FL applications, addresses hot topics, provides valuable insights and explicits guidance for future research and developments.
Our concluding remarks aim to leverage the synergy between FL and future 6G, while highlighting FL's potential to revolutionize wireless industry.
arXiv Detail & Related papers (2023-12-07T20:39:57Z) - Edge-assisted U-Shaped Split Federated Learning with Privacy-preserving
for Internet of Things [4.68267059122563]
We present an innovative Edge-assisted U-Shaped Split Federated Learning (EUSFL) framework, which harnesses the high-performance capabilities of edge servers.
In this framework, we leverage Federated Learning (FL) to enable data holders to collaboratively train models without sharing their data.
We also propose a novel noise mechanism called LabelDP to ensure that data features and labels can securely resist reconstruction attacks.
arXiv Detail & Related papers (2023-11-08T05:14:41Z) - Federated Learning on Edge Sensing Devices: A Review [0.0]
Federated Learning (FL) is emerging as a solution to privacy, hardware, and connectivity limitations.
We focus on the key FL principles, software frameworks, and testbeds.
We also explore the current sensor technologies, properties of the sensing devices and sensing applications where FL is utilized.
arXiv Detail & Related papers (2023-11-02T12:55:26Z) - Federated Learning and Meta Learning: Approaches, Applications, and
Directions [94.68423258028285]
In this tutorial, we present a comprehensive review of FL, meta learning, and federated meta learning (FedMeta)
Unlike other tutorial papers, our objective is to explore how FL, meta learning, and FedMeta methodologies can be designed, optimized, and evolved, and their applications over wireless networks.
arXiv Detail & Related papers (2022-10-24T10:59:29Z) - Online Data Selection for Federated Learning with Limited Storage [53.46789303416799]
Federated Learning (FL) has been proposed to achieve distributed machine learning among networked devices.
The impact of on-device storage on the performance of FL is still not explored.
In this work, we take the first step to consider the online data selection for FL with limited on-device storage.
arXiv Detail & Related papers (2022-09-01T03:27:33Z) - Deep Reinforcement Learning Assisted Federated Learning Algorithm for
Data Management of IIoT [82.33080550378068]
The continuous expanded scale of the industrial Internet of Things (IIoT) leads to IIoT equipments generating massive amounts of user data every moment.
How to manage these time series data in an efficient and safe way in the field of IIoT is still an open issue.
This paper studies the FL technology applications to manage IIoT equipment data in wireless network environments.
arXiv Detail & Related papers (2022-02-03T07:12:36Z) - Federated Learning for Internet of Things: A Federated Learning
Framework for On-device Anomaly Data Detection [10.232121085973782]
We build a FedIoT platform that contains a synthesized dataset using N-BaIoT, FedDetect algorithm, and a system design for IoT devices.
In a network of realistic IoT devices (PI), we evaluate FedIoT platform and FedDetect algorithm in both model and system performance.
arXiv Detail & Related papers (2021-06-15T08:53:42Z) - Wireless Communications for Collaborative Federated Learning [160.82696473996566]
Internet of Things (IoT) devices may not be able to transmit their collected data to a central controller for training machine learning models.
Google's seminal FL algorithm requires all devices to be directly connected with a central controller.
This paper introduces a novel FL framework, called collaborative FL (CFL), which enables edge devices to implement FL with less reliance on a central controller.
arXiv Detail & Related papers (2020-06-03T20:00:02Z) - Evaluating the Communication Efficiency in Federated Learning Algorithms [3.713348568329249]
Recently, in light of new privacy legislations in many countries, the concept of Federated Learning (FL) has been introduced.
In FL, mobile users are empowered to learn a global model by aggregating their local models, without sharing the privacy-sensitive data.
This raises the challenge of communication cost when implementing FL at large scale.
arXiv Detail & Related papers (2020-04-06T15:31:54Z) - Federated Learning for Resource-Constrained IoT Devices: Panoramas and
State-of-the-art [12.129978716326676]
We introduce some recently implemented real-life applications of Federated Learning.
In large-scale networks, there may be clients with varying computational resource capabilities.
We highlight future directions in the FL area concerning resource-constrained devices.
arXiv Detail & Related papers (2020-02-25T01:03:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.