論文の概要: Narrative Interpolation for Generating and Understanding Stories
- arxiv url: http://arxiv.org/abs/2008.07466v1
- Date: Mon, 17 Aug 2020 16:45:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-28 03:42:50.533230
- Title: Narrative Interpolation for Generating and Understanding Stories
- Title(参考訳): 物語の生成と理解のための物語補間
- Authors: Su Wang, Greg Durrett, Katrin Erk
- Abstract要約: そこで本研究では,ユーザが特定した目的語を含むコヒーレントな物語を生成するために,モデルをガイドできる物語・物語生成制御手法を提案する。
本手法の中核はGPT-2に基づく漸進的モデルであり,前文と次文を物語の中で条件付けし,そのギャップを埋める。
終末誘導世代は、与えられた終末ガイドに忠実で忠実であり、過去のアプローチよりも手作業の少ない物語を生み出すことを示す。
- 参考スコア(独自算出の注目度): 52.463747140762145
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a method for controlled narrative/story generation where we are
able to guide the model to produce coherent narratives with user-specified
target endings by interpolation: for example, we are told that Jim went hiking
and at the end Jim needed to be rescued, and we want the model to incrementally
generate steps along the way. The core of our method is an interpolation model
based on GPT-2 which conditions on a previous sentence and a next sentence in a
narrative and fills in the gap. Additionally, a reranker helps control for
coherence of the generated text. With human evaluation, we show that
ending-guided generation results in narratives which are coherent, faithful to
the given ending guide, and require less manual effort on the part of the human
guide writer than past approaches.
- Abstract(参考訳): 例えば,Jimはハイキングに行き,最後には救助が必要とされ,その過程で段階的にモデルが生成されることが望まれる。
本手法の核心はgpt-2に基づく補間モデルであり,前文と次文の条件をナラティブで満たし,そのギャップを埋める。
さらに、リランカは生成されたテキストのコヒーレンスを制御するのに役立つ。
人間の評価により,エンディングガイドの世代は,与えられたエンディングガイドに忠実で,過去のアプローチよりも人手による作業が少ない物語になることが示された。
関連論文リスト
- Returning to the Start: Generating Narratives with Related Endpoints [27.61802620856587]
本稿では,物語生成パラダイムであるRENarGenを提案する。
私たちのコントリビューションには、ナラトロジーからの様々な予約方法がストーリーの言語モデリングにどのように影響するかの最初の調査が含まれている。
論文 参考訳(メタデータ) (2024-03-31T23:48:50Z) - Robust Preference Learning for Storytelling via Contrastive
Reinforcement Learning [53.92465205531759]
制御された自動ストーリ生成は、自然言語批判や嗜好から制約を満たす自然言語ストーリを生成することを目指している。
対照的なバイエンコーダモデルをトレーニングし、ストーリーを人間の批評と整合させ、汎用的な嗜好モデルを構築する。
我々はさらに、ストーリー生成の堅牢性を高めるために、プロンプトラーニング技術を用いて、対照的な報酬モデルを微調整する。
論文 参考訳(メタデータ) (2022-10-14T13:21:33Z) - SNaC: Coherence Error Detection for Narrative Summarization [73.48220043216087]
SNaCは長文の微粒化アノテーションに根ざした物語コヒーレンス評価フレームワークである。
本稿では,生成した物語要約におけるコヒーレンスエラーの分類法を開発し,150冊の本や映画の脚本要約にまたがる6.6k文のスパンレベルアノテーションを収集する。
我々の研究は、最先端の要約モデルによって生成されるコヒーレンスエラーの最初の特徴と、群衆アノテータからコヒーレンス判断を引き出すためのプロトコルを提供する。
論文 参考訳(メタデータ) (2022-05-19T16:01:47Z) - Persona-Guided Planning for Controlling the Protagonist's Persona in
Story Generation [71.24817035071176]
本研究では,ペルソナとイベントの関係を明示的にモデル化する計画ベース生成モデルCONPERを提案する。
自動評価と手動評価の両方の結果から、CONPERはより一貫性のあるペルソナ制御可能なストーリーを生成するために最先端のベースラインより優れていることが示されている。
論文 参考訳(メタデータ) (2022-04-22T13:45:02Z) - Inferring the Reader: Guiding Automated Story Generation with
Commonsense Reasoning [12.264880519328353]
生成プロセスにコモンセンス推論を導入するフレームワークであるCommonsense-inference Augmented Neural StoryTelling (CAST)を紹介する。
我々のCAST手法は,既存のモデルよりも,一文字と二文字の両方で,一貫性があり,オントピー的,楽しむことができる。
論文 参考訳(メタデータ) (2021-05-04T06:40:33Z) - Cue Me In: Content-Inducing Approaches to Interactive Story Generation [74.09575609958743]
本研究では,対話型物語生成の課題に焦点をあてる。
本稿では、この追加情報を効果的に活用するための2つのコンテンツ誘導手法を提案する。
自動評価と人的評価の両方による実験結果から,これらの手法がよりトポロジ的な一貫性とパーソナライズされたストーリーを生み出すことが示された。
論文 参考訳(メタデータ) (2020-10-20T00:36:15Z) - Consistency and Coherency Enhanced Story Generation [35.08911595854691]
生成したストーリーの一貫性と一貫性を高めるための2段階生成フレームワークを提案する。
第1段は物語の筋書きや出来事を描いた物語の輪郭を整理し、第2段は完全な物語へと輪郭を広げることである。
さらに、コア参照監視信号は、コア参照エラーを低減し、コア参照一貫性を向上させるために組み込まれている。
論文 参考訳(メタデータ) (2020-10-17T16:40:37Z) - Narrative Text Generation with a Latent Discrete Plan [39.71663365273463]
本稿では,その生成過程の一環として,物語中の文ごとに1つのアンカー語列を最初にサンプリングする潜時変数モデルを提案する。
トレーニング中は、アンカー語の列を潜在変数として扱い、アンカーの列を誘導し、教師なしの方法で生成を誘導する。
我々は,本モデルで作成したストーリーが,ストーリープランを考慮しないベースラインと比較して評価が優れていることを示す,人間による評価を行う。
論文 参考訳(メタデータ) (2020-10-07T08:45:37Z) - PlotMachines: Outline-Conditioned Generation with Dynamic Plot State
Tracking [128.76063992147016]
PlotMachinesは、動的プロット状態を追跡することによってアウトラインをコヒーレントなストーリーに変換することを学習する、ニューラルな物語モデルである。
さらに,PlotMachinesを高レベルな談話構造で強化し,モデルが物語の異なる部分に対応する筆記スタイルを学習できるようにした。
論文 参考訳(メタデータ) (2020-04-30T17:16:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。