論文の概要: A Deep Dive into Adversarial Robustness in Zero-Shot Learning
- arxiv url: http://arxiv.org/abs/2008.07651v1
- Date: Mon, 17 Aug 2020 22:26:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-28 04:10:26.114444
- Title: A Deep Dive into Adversarial Robustness in Zero-Shot Learning
- Title(参考訳): ゼロショット学習における敵対的ロバストネスの深み
- Authors: Mehmet Kerim Yucel, Ramazan Gokberk Cinbis, Pinar Duygulu
- Abstract要約: 本稿では,ゼロショット学習(ZSL)モデルと一般化ゼロショット学習(GZSL)モデルの対角的堅牢性を評価することを目的とした研究を行う。
ZSLモデルの逆ロバスト性に関する最初のベンチマークを作成することに加えて、ZSLロバスト性の結果をよりよく解釈するために注意を要する重要な点についても分析する。
- 参考スコア(独自算出の注目度): 9.62543698736491
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning (ML) systems have introduced significant advances in various
fields, due to the introduction of highly complex models. Despite their
success, it has been shown multiple times that machine learning models are
prone to imperceptible perturbations that can severely degrade their accuracy.
So far, existing studies have primarily focused on models where supervision
across all classes were available. In constrast, Zero-shot Learning (ZSL) and
Generalized Zero-shot Learning (GZSL) tasks inherently lack supervision across
all classes. In this paper, we present a study aimed on evaluating the
adversarial robustness of ZSL and GZSL models. We leverage the well-established
label embedding model and subject it to a set of established adversarial
attacks and defenses across multiple datasets. In addition to creating possibly
the first benchmark on adversarial robustness of ZSL models, we also present
analyses on important points that require attention for better interpretation
of ZSL robustness results. We hope these points, along with the benchmark, will
help researchers establish a better understanding what challenges lie ahead and
help guide their work.
- Abstract(参考訳): 機械学習(ML)システムは、高度に複雑なモデルの導入により、様々な分野で大きな進歩をもたらした。
その成功にもかかわらず、機械学習モデルは、その精度を著しく低下させる、知覚できない摂動の傾向が何度も示されてきた。
これまでの研究は主に、すべてのクラスにまたがる監督が利用できるモデルに焦点が当てられている。
コンストラストでは、ゼロショットラーニング(ZSL)と一般化ゼロショットラーニング(GZSL)タスクは、本質的にすべてのクラスに対する監督を欠いている。
本稿では,ZSLモデルとGZSLモデルの対角的ロバスト性の評価を目的とした研究を行う。
我々は、確立されたラベル埋め込みモデルを利用して、複数のデータセットにまたがって確立された敵対的攻撃と防御を行う。
ZSLモデルの逆ロバスト性に関する最初のベンチマークを作成することに加え、ZSLロバスト性の結果をよりよく解釈するために注意を要する重要な点について分析する。
これらのポイントが、ベンチマークとともに、研究者が先にある課題をより深く理解し、作業のガイドとなることを願っています。
関連論文リスト
- Fine-Grained Zero-Shot Learning: Advances, Challenges, and Prospects [84.36935309169567]
ゼロショット学習(ZSL)における微粒化解析の最近の進歩を概観する。
まず、各カテゴリの詳細な分析を行い、既存の手法と手法の分類について述べる。
次に、ベンチマークを要約し、公開データセット、モデル、実装、およびライブラリとしての詳細について説明する。
論文 参考訳(メタデータ) (2024-01-31T11:51:24Z) - From Zero-Shot to Few-Shot Learning: A Step of Embedding-Aware
Generative Models [21.603519845525483]
埋め込み認識生成モデル(EAGM)は、意味的空間と視覚的埋め込み空間の間にジェネレータを構築することにより、ゼロショット学習(ZSL)におけるデータ不足問題に対処する。
我々は、一歩後退し、埋め込み認識生成パラダイムを再考する時が来たと論じる。
論文 参考訳(メタデータ) (2023-02-08T13:53:18Z) - Benchmark for Uncertainty & Robustness in Self-Supervised Learning [0.0]
セルフ・スーパーバイザード・ラーニングは現実世界のアプリケーション、特に医療や自動運転車のようなデータ・ハングリーな分野に不可欠である。
本稿では Jigsaw Puzzles, Context, Rotation, Geometric Transformations Prediction for vision や BERT や GPT for Language Task など,SSL メソッドの変種について検討する。
我々のゴールは、実験から出力されたベンチマークを作成し、信頼性のある機械学習で新しいSSLメソッドの出発点を提供することです。
論文 参考訳(メタデータ) (2022-12-23T15:46:23Z) - Federated Zero-Shot Learning for Visual Recognition [55.65879596326147]
本稿では,Federated Zero-Shot Learning FedZSLフレームワークを提案する。
FedZSLは、エッジデバイス上の分散データから中心的なモデルを学ぶ。
FedZSLの有効性と堅牢性は、3つのゼロショットベンチマークデータセットで実施された広範な実験によって実証された。
論文 参考訳(メタデータ) (2022-09-05T14:49:34Z) - Decoupled Adversarial Contrastive Learning for Self-supervised
Adversarial Robustness [69.39073806630583]
頑健な表現学習のための対人訓練(AT)と教師なし表現学習のための自己教師型学習(SSL)は2つの活発な研究分野である。
Decoupled Adversarial Contrastive Learning (DeACL) と呼ばれる2段階のフレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-22T06:30:44Z) - On Higher Adversarial Susceptibility of Contrastive Self-Supervised
Learning [104.00264962878956]
コントラスト型自己教師学習(CSL)は,画像と映像の分類において,教師あり学習のパフォーマンスに適合するか上回っている。
2つの学習パラダイムによって誘導される表現の性質が似ているかどうかは、いまだに不明である。
我々は,CSL表現空間における単位超球面上のデータ表現の均一分布を,この現象の鍵となる要因として同定する。
CSLトレーニングでモデルロバスト性を改善するのにシンプルだが有効である戦略を考案する。
論文 参考訳(メタデータ) (2022-07-22T03:49:50Z) - How Robust are Discriminatively Trained Zero-Shot Learning Models? [9.62543698736491]
画像劣化に対する識別的ZSLのロバスト性に関する新しい解析法を提案する。
SUN-C, CUB-C, AWA2-Cの最初のZSL破壊堅牢性データセットをリリースする。
論文 参考訳(メタデータ) (2022-01-26T14:41:10Z) - Self-supervised Learning is More Robust to Dataset Imbalance [65.84339596595383]
データセット不均衡下での自己教師型学習について検討する。
既製の自己教師型表現は、教師型表現よりもクラス不均衡に対してすでに堅牢である。
我々は、不均衡なデータセット上でSSL表現品質を一貫して改善する、再重み付け正規化手法を考案した。
論文 参考訳(メタデータ) (2021-10-11T06:29:56Z) - Dynamic VAEs with Generative Replay for Continual Zero-shot Learning [1.90365714903665]
本稿では,タスクごとにサイズが拡大する新しいゼロショット学習(DVGR-CZSL)モデルを提案する。
ZSL(Zero-Shot Learning)を用いた逐次学習において,本手法が優れていることを示す。
論文 参考訳(メタデータ) (2021-04-26T10:56:43Z) - Meta-Learned Attribute Self-Gating for Continual Generalized Zero-Shot
Learning [82.07273754143547]
トレーニング中に見られないカテゴリにモデルを一般化するためのメタ連続ゼロショット学習(MCZSL)アプローチを提案する。
属性の自己決定とスケールしたクラス正規化をメタラーニングベースのトレーニングと組み合わせることで、最先端の成果を上回ることができるのです。
論文 参考訳(メタデータ) (2021-02-23T18:36:14Z) - A Review of Generalized Zero-Shot Learning Methods [31.539434340951786]
汎用ゼロショット学習(GZSL)は、教師付き学習において、いくつかの出力クラスが未知である条件下でデータサンプルを分類するモデルを訓練することを目的としている。
GZSLは、見た(ソース)クラスと見えない(ターゲット)クラスのセマンティック情報を活用して、見えないクラスと見えないクラスのギャップを埋める。
論文 参考訳(メタデータ) (2020-11-17T14:00:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。