Fully automated deep learning based segmentation of normal, infarcted
and edema regions from multiple cardiac MRI sequences
- URL: http://arxiv.org/abs/2008.07770v1
- Date: Tue, 18 Aug 2020 07:01:24 GMT
- Title: Fully automated deep learning based segmentation of normal, infarcted
and edema regions from multiple cardiac MRI sequences
- Authors: Xiaoran Zhang and Michelle Noga and Kumaradevan Punithakumar
- Abstract summary: We propose a fully automated approach using deep convolutional neural networks (CNN) for cardiac pathology segmentation.
The input to the network consists of three CMR sequences, namely, late gadolinium enhancement (LGE), T2 and balanced steady state free precession (bSSFP)
The proposed approach is evaluated by the challenge organizers with a test set including 20 cases and achieves a mean dice score of $46.8%$ for LV MS and $55.7%$ for LV ME+MS.
- Score: 0.3758535425255491
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Myocardial characterization is essential for patients with myocardial
infarction and other myocardial diseases, and the assessment is often performed
using cardiac magnetic resonance (CMR) sequences. In this study, we propose a
fully automated approach using deep convolutional neural networks (CNN) for
cardiac pathology segmentation, including left ventricular (LV) blood pool,
right ventricular blood pool, LV normal myocardium, LV myocardial edema (ME)
and LV myocardial scars (MS). The input to the network consists of three CMR
sequences, namely, late gadolinium enhancement (LGE), T2 and balanced steady
state free precession (bSSFP). The proposed approach utilized the data provided
by the MyoPS challenge hosted by MICCAI 2020 in conjunction with STACOM. The
training set for the CNN model consists of images acquired from 25 cases, and
the gold standard labels are provided by trained raters and validated by
radiologists. The proposed approach introduces a data augmentation module,
linear encoder and decoder module and a network module to increase the number
of training samples and improve the prediction accuracy for LV ME and MS. The
proposed approach is evaluated by the challenge organizers with a test set
including 20 cases and achieves a mean dice score of $46.8\%$ for LV MS and
$55.7\%$ for LV ME+MS
Related papers
- CaRe-CNN: Cascading Refinement CNN for Myocardial Infarct Segmentation
with Microvascular Obstructions [0.29958858726265647]
Cascading Refinement CNN (CaRe-CNN) is a fully 3D, end-to-end trained, 3-stage CNN cascade.
CaRe-CNN was submitted to the FIMH 2023 MYOSAIQ challenge, where it ranked second out of 18 participating teams.
arXiv Detail & Related papers (2023-12-18T16:10:18Z) - MyoPS: A Benchmark of Myocardial Pathology Segmentation Combining
Three-Sequence Cardiac Magnetic Resonance Images [84.02849948202116]
This work defines a new task of medical image analysis, i.e., to perform myocardial pathology segmentation (MyoPS)
MyoPS combines three-sequence cardiac magnetic resonance (CMR) images, which was first proposed in the MyoPS challenge, in conjunction with MICCAI 2020.
The challenge provided 45 paired and pre-aligned CMR images, allowing algorithms to combine the complementary information from the three CMR sequences for pathology segmentation.
arXiv Detail & Related papers (2022-01-10T06:37:23Z) - Cascaded Convolutional Neural Network for Automatic Myocardial
Infarction Segmentation from Delayed-Enhancement Cardiac MRI [12.940103904327655]
We propose a cascaded convolutional neural network for automatic myocardial infarction segmentation from cardiac MRI.
Our method is evaluated on the MICCAI 2020 EMIDEC challenge dataset and achieves average Dice score of 0.8786, 0.7124 and 0.7851 for myocardium, infarction and no-reflow respectively.
arXiv Detail & Related papers (2020-12-28T07:41:10Z) - Noise-Resilient Automatic Interpretation of Holter ECG Recordings [67.59562181136491]
We present a three-stage process for analysing Holter recordings with robustness to noisy signal.
First stage is a segmentation neural network (NN) with gradientdecoder architecture which detects positions of heartbeats.
Second stage is a classification NN which will classify heartbeats as wide or narrow.
Third stage is a boosting decision trees (GBDT) on top of NN features that incorporates patient-wise features.
arXiv Detail & Related papers (2020-11-17T16:15:49Z) - Automatic Myocardial Infarction Evaluation from Delayed-Enhancement
Cardiac MRI using Deep Convolutional Networks [8.544381926074971]
We propose a new deep learning framework for an automatic myocardial infarction evaluation from clinical information and delayed enhancement-MRI (DE-MRI)
It employs two segmentation neural networks. The first network is used to segment the anatomical structures such as the myocardium and left ventricular cavity.
The second task is to automatically classify a given case into normal or pathological from clinical information with or without DE-MRI.
arXiv Detail & Related papers (2020-10-30T11:18:25Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
In this study, 18 non-invasive features (age, gender, left ventricular ejection fraction and 15 obtained from HRV) of 243 subjects were used to train and validate a series of several ANN.
The best result was obtained using 7 input parameters and 7 hidden nodes with an accuracy of 98.9% and 82% for the training and validation dataset.
arXiv Detail & Related papers (2020-10-29T19:14:41Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
The novel coronavirus (SARS-CoV-2) has led to a pandemic.
The current testing regime based on Reverse Transcription-Polymerase Chain Reaction for SARS-CoV-2 has been unable to keep up with testing demands.
We propose a framework called CovidDeep that combines efficient DNNs with commercially available WMSs for pervasive testing of the virus.
arXiv Detail & Related papers (2020-07-20T21:47:28Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z) - CondenseUNet: A Memory-Efficient Condensely-Connected Architecture for
Bi-ventricular Blood Pool and Myocardium Segmentation [0.0]
We propose a novel memory-efficient Convolutional Neural Network (CNN) architecture as a modification of both CondenseNet and DenseNet.
Our experiments show that the proposed architecture runs on the Automated Cardiac Diagnosis Challenge dataset.
arXiv Detail & Related papers (2020-04-05T16:34:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.