Cascaded Convolutional Neural Network for Automatic Myocardial
Infarction Segmentation from Delayed-Enhancement Cardiac MRI
- URL: http://arxiv.org/abs/2012.14128v1
- Date: Mon, 28 Dec 2020 07:41:10 GMT
- Title: Cascaded Convolutional Neural Network for Automatic Myocardial
Infarction Segmentation from Delayed-Enhancement Cardiac MRI
- Authors: Yichi Zhang
- Abstract summary: We propose a cascaded convolutional neural network for automatic myocardial infarction segmentation from cardiac MRI.
Our method is evaluated on the MICCAI 2020 EMIDEC challenge dataset and achieves average Dice score of 0.8786, 0.7124 and 0.7851 for myocardium, infarction and no-reflow respectively.
- Score: 12.940103904327655
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic segmentation of myocardial contours and relevant areas like
infraction and no-reflow is an important step for the quantitative evaluation
of myocardial infarction. In this work, we propose a cascaded convolutional
neural network for automatic myocardial infarction segmentation from
delayed-enhancement cardiac MRI. We first use a 2D U-Net to focus on the
intra-slice information to perform a preliminary segmentation. After that, we
use a 3D U-Net to utilize the volumetric spatial information for a subtle
segmentation. Our method is evaluated on the MICCAI 2020 EMIDEC challenge
dataset and achieves average Dice score of 0.8786, 0.7124 and 0.7851 for
myocardium, infarction and no-reflow respectively, outperforms all the other
teams of the segmentation contest.
Related papers
- CaRe-CNN: Cascading Refinement CNN for Myocardial Infarct Segmentation
with Microvascular Obstructions [0.29958858726265647]
Cascading Refinement CNN (CaRe-CNN) is a fully 3D, end-to-end trained, 3-stage CNN cascade.
CaRe-CNN was submitted to the FIMH 2023 MYOSAIQ challenge, where it ranked second out of 18 participating teams.
arXiv Detail & Related papers (2023-12-18T16:10:18Z) - Semantic-aware Temporal Channel-wise Attention for Cardiac Function
Assessment [69.02116920364311]
Existing video-based methods do not pay much attention to the left ventricular region, nor the left ventricular changes caused by motion.
We propose a semi-supervised auxiliary learning paradigm with a left ventricular segmentation task, which contributes to the representation learning for the left ventricular region.
Our approach achieves state-of-the-art performance on the Stanford dataset with an improvement of 0.22 MAE, 0.26 RMSE, and 1.9% $R2$.
arXiv Detail & Related papers (2023-10-09T05:57:01Z) - Learned Local Attention Maps for Synthesising Vessel Segmentations [43.314353195417326]
We present an encoder-decoder model for synthesising segmentations of the main cerebral arteries in the circle of Willis (CoW) from only T2 MRI.
It uses learned local attention maps generated by dilating the segmentation labels, which forces the network to only extract information from the T2 MRI relevant to synthesising the CoW.
arXiv Detail & Related papers (2023-08-24T15:32:27Z) - MyoPS: A Benchmark of Myocardial Pathology Segmentation Combining
Three-Sequence Cardiac Magnetic Resonance Images [84.02849948202116]
This work defines a new task of medical image analysis, i.e., to perform myocardial pathology segmentation (MyoPS)
MyoPS combines three-sequence cardiac magnetic resonance (CMR) images, which was first proposed in the MyoPS challenge, in conjunction with MICCAI 2020.
The challenge provided 45 paired and pre-aligned CMR images, allowing algorithms to combine the complementary information from the three CMR sequences for pathology segmentation.
arXiv Detail & Related papers (2022-01-10T06:37:23Z) - Cascaded Framework for Automatic Evaluation of Myocardial Infarction
from Delayed-Enhancement Cardiac MRI [9.247774141419134]
We first use a 2D U-Net to segment the whole heart, including the left ventricle and the myocardium.
A new 2D U-Net is used to segment the infraction and no-reflow areas in the whole heart ROI.
Our method took second place in the MICCAI 2020 EMIDEC segmentation task with Dice scores of 86.28%, 62.24%, and 77.76% for myocardium, infraction, and no-reflow areas, respectively, and first place in the classification task with an accuracy of 92%.
arXiv Detail & Related papers (2020-12-29T01:35:02Z) - Noise-Resilient Automatic Interpretation of Holter ECG Recordings [67.59562181136491]
We present a three-stage process for analysing Holter recordings with robustness to noisy signal.
First stage is a segmentation neural network (NN) with gradientdecoder architecture which detects positions of heartbeats.
Second stage is a classification NN which will classify heartbeats as wide or narrow.
Third stage is a boosting decision trees (GBDT) on top of NN features that incorporates patient-wise features.
arXiv Detail & Related papers (2020-11-17T16:15:49Z) - Automatic Myocardial Infarction Evaluation from Delayed-Enhancement
Cardiac MRI using Deep Convolutional Networks [8.544381926074971]
We propose a new deep learning framework for an automatic myocardial infarction evaluation from clinical information and delayed enhancement-MRI (DE-MRI)
It employs two segmentation neural networks. The first network is used to segment the anatomical structures such as the myocardium and left ventricular cavity.
The second task is to automatically classify a given case into normal or pathological from clinical information with or without DE-MRI.
arXiv Detail & Related papers (2020-10-30T11:18:25Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z) - CondenseUNet: A Memory-Efficient Condensely-Connected Architecture for
Bi-ventricular Blood Pool and Myocardium Segmentation [0.0]
We propose a novel memory-efficient Convolutional Neural Network (CNN) architecture as a modification of both CondenseNet and DenseNet.
Our experiments show that the proposed architecture runs on the Automated Cardiac Diagnosis Challenge dataset.
arXiv Detail & Related papers (2020-04-05T16:34:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.