Adaptive Distillation for Decentralized Learning from Heterogeneous
Clients
- URL: http://arxiv.org/abs/2008.07948v1
- Date: Tue, 18 Aug 2020 14:25:22 GMT
- Title: Adaptive Distillation for Decentralized Learning from Heterogeneous
Clients
- Authors: Jiaxin Ma and Ryo Yonetani and Zahid Iqbal
- Abstract summary: We propose a new decentralized learning method called Decentralized Learning via Adaptive Distillation (DLAD)
The proposed DLAD aggregates the outputs of the client models while adaptively emphasizing those with higher confidence in given distillation samples.
Our extensive experimental evaluation on multiple public datasets demonstrates the effectiveness of the proposed method.
- Score: 9.261720698142097
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper addresses the problem of decentralized learning to achieve a
high-performance global model by asking a group of clients to share local
models pre-trained with their own data resources. We are particularly
interested in a specific case where both the client model architectures and
data distributions are diverse, which makes it nontrivial to adopt conventional
approaches such as Federated Learning and network co-distillation. To this end,
we propose a new decentralized learning method called Decentralized Learning
via Adaptive Distillation (DLAD). Given a collection of client models and a
large number of unlabeled distillation samples, the proposed DLAD 1) aggregates
the outputs of the client models while adaptively emphasizing those with higher
confidence in given distillation samples and 2) trains the global model to
imitate the aggregated outputs. Our extensive experimental evaluation on
multiple public datasets (MNIST, CIFAR-10, and CINIC-10) demonstrates the
effectiveness of the proposed method.
Related papers
- Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - One-Shot Federated Learning with Classifier-Guided Diffusion Models [44.604485649167216]
One-shot federated learning (OSFL) has gained attention in recent years due to its low communication cost.
In this paper, we explore the novel opportunities that diffusion models bring to OSFL and propose FedCADO.
FedCADO generates data that complies with clients' distributions and subsequently training the aggregated model on the server.
arXiv Detail & Related papers (2023-11-15T11:11:25Z) - Adapter-based Selective Knowledge Distillation for Federated
Multi-domain Meeting Summarization [36.916155654985936]
Meeting summarization has emerged as a promising technique for providing users with condensed summaries.
We propose adapter-based Federated Selective Knowledge Distillation (AdaFedSelecKD) for training performant client models.
arXiv Detail & Related papers (2023-08-07T03:34:01Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - Federated Learning on Non-iid Data via Local and Global Distillation [25.397058380098816]
We propose FedND: federated learning with noise distillation.
In the client, we propose a self-distillation method to train the local model.
In the server, we generate noisy samples for each client and use them to distill other clients.
Experimental results show that the algorithm achieves the best performance and is more communication-efficient than state-of-the-art methods.
arXiv Detail & Related papers (2023-06-26T06:14:01Z) - Personalized Decentralized Federated Learning with Knowledge
Distillation [5.469841541565307]
Personalization in federated learning functions as a coordinator for clients with high variance in data or behavior.
It is generally challenging to quantify similarity under limited knowledge about other users' models given to users in a decentralized network.
We propose a personalized and fully decentralized FL algorithm, leveraging knowledge distillation techniques to empower each device so as to discern statistical distances between local models.
arXiv Detail & Related papers (2023-02-23T16:41:07Z) - Fine-tuning Global Model via Data-Free Knowledge Distillation for
Non-IID Federated Learning [86.59588262014456]
Federated Learning (FL) is an emerging distributed learning paradigm under privacy constraint.
We propose a data-free knowledge distillation method to fine-tune the global model in the server (FedFTG)
Our FedFTG significantly outperforms the state-of-the-art (SOTA) FL algorithms and can serve as a strong plugin for enhancing FedAvg, FedProx, FedDyn, and SCAFFOLD.
arXiv Detail & Related papers (2022-03-17T11:18:17Z) - A Personalized Federated Learning Algorithm: an Application in Anomaly
Detection [0.6700873164609007]
Federated Learning (FL) has recently emerged as a promising method to overcome data privacy and transmission issues.
In FL, datasets collected from different devices or sensors are used to train local models (clients) each of which shares its learning with a centralized model (server)
This paper proposes a novel Personalized FedAvg (PC-FedAvg) which aims to control weights communication and aggregation augmented with a tailored learning algorithm to personalize the resulting models at each client.
arXiv Detail & Related papers (2021-11-04T04:57:11Z) - FedKD: Communication Efficient Federated Learning via Knowledge
Distillation [56.886414139084216]
Federated learning is widely used to learn intelligent models from decentralized data.
In federated learning, clients need to communicate their local model updates in each iteration of model learning.
We propose a communication efficient federated learning method based on knowledge distillation.
arXiv Detail & Related papers (2021-08-30T15:39:54Z) - Towards Fair Federated Learning with Zero-Shot Data Augmentation [123.37082242750866]
Federated learning has emerged as an important distributed learning paradigm, where a server aggregates a global model from many client-trained models while having no access to the client data.
We propose a novel federated learning system that employs zero-shot data augmentation on under-represented data to mitigate statistical heterogeneity and encourage more uniform accuracy performance across clients in federated networks.
We study two variants of this scheme, Fed-ZDAC (federated learning with zero-shot data augmentation at the clients) and Fed-ZDAS (federated learning with zero-shot data augmentation at the server).
arXiv Detail & Related papers (2021-04-27T18:23:54Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
Decentralized training of deep learning models is a key element for enabling data privacy and on-device learning over networks.
In realistic learning scenarios, the presence of heterogeneity across different clients' local datasets poses an optimization challenge.
We propose a novel momentum-based method to mitigate this decentralized training difficulty.
arXiv Detail & Related papers (2021-02-09T11:27:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.