Personalized Decentralized Federated Learning with Knowledge
Distillation
- URL: http://arxiv.org/abs/2302.12156v1
- Date: Thu, 23 Feb 2023 16:41:07 GMT
- Title: Personalized Decentralized Federated Learning with Knowledge
Distillation
- Authors: Eunjeong Jeong, Marios Kountouris
- Abstract summary: Personalization in federated learning functions as a coordinator for clients with high variance in data or behavior.
It is generally challenging to quantify similarity under limited knowledge about other users' models given to users in a decentralized network.
We propose a personalized and fully decentralized FL algorithm, leveraging knowledge distillation techniques to empower each device so as to discern statistical distances between local models.
- Score: 5.469841541565307
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Personalization in federated learning (FL) functions as a coordinator for
clients with high variance in data or behavior. Ensuring the convergence of
these clients' models relies on how closely users collaborate with those with
similar patterns or preferences. However, it is generally challenging to
quantify similarity under limited knowledge about other users' models given to
users in a decentralized network. To cope with this issue, we propose a
personalized and fully decentralized FL algorithm, leveraging knowledge
distillation techniques to empower each device so as to discern statistical
distances between local models. Each client device can enhance its performance
without sharing local data by estimating the similarity between two
intermediate outputs from feeding local samples as in knowledge distillation.
Our empirical studies demonstrate that the proposed algorithm improves the test
accuracy of clients in fewer iterations under highly non-independent and
identically distributed (non-i.i.d.) data distributions and is beneficial to
agents with small datasets, even without the need for a central server.
Related papers
- FedClust: Tackling Data Heterogeneity in Federated Learning through Weight-Driven Client Clustering [26.478852701376294]
Federated learning (FL) is an emerging distributed machine learning paradigm.
One of the major challenges in FL is the presence of uneven data distributions across client devices.
We propose em FedClust, a novel approach for CFL that leverages the correlation between local model weights and the data distribution of clients.
arXiv Detail & Related papers (2024-07-09T02:47:16Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
Federated learning (FL) and Split Learning (SL) are two frameworks that enable collaborative learning while keeping the data private (on device)
In FL, each data holder trains a model locally and releases it to a central server for aggregation.
In SL, the clients must release individual cut-layer activations (smashed data) to the server and wait for its response (during both inference and back propagation).
In this work, we present a novel approach for privacy-preserving machine learning, where the clients collaborate via online knowledge distillation using a contrastive loss.
arXiv Detail & Related papers (2022-11-20T10:49:22Z) - Anomaly Detection through Unsupervised Federated Learning [0.0]
Federated learning is proving to be one of the most promising paradigms for leveraging distributed resources.
We propose a novel method in which, through a preprocessing phase, clients are grouped into communities.
The resulting anomaly detection model is then shared and used to detect anomalies within the clients of the same community.
arXiv Detail & Related papers (2022-09-09T08:45:47Z) - A Personalized Federated Learning Algorithm: an Application in Anomaly
Detection [0.6700873164609007]
Federated Learning (FL) has recently emerged as a promising method to overcome data privacy and transmission issues.
In FL, datasets collected from different devices or sensors are used to train local models (clients) each of which shares its learning with a centralized model (server)
This paper proposes a novel Personalized FedAvg (PC-FedAvg) which aims to control weights communication and aggregation augmented with a tailored learning algorithm to personalize the resulting models at each client.
arXiv Detail & Related papers (2021-11-04T04:57:11Z) - Decentralized federated learning of deep neural networks on non-iid data [0.6335848702857039]
We tackle the non-problem of learning a personalized deep learning model in a decentralized setting.
We propose a method named Performance-Based Neighbor Selection (PENS) where clients with similar data detect each other and cooperate.
PENS is able to achieve higher accuracies as compared to strong baselines.
arXiv Detail & Related papers (2021-07-18T19:05:44Z) - Towards Fair Federated Learning with Zero-Shot Data Augmentation [123.37082242750866]
Federated learning has emerged as an important distributed learning paradigm, where a server aggregates a global model from many client-trained models while having no access to the client data.
We propose a novel federated learning system that employs zero-shot data augmentation on under-represented data to mitigate statistical heterogeneity and encourage more uniform accuracy performance across clients in federated networks.
We study two variants of this scheme, Fed-ZDAC (federated learning with zero-shot data augmentation at the clients) and Fed-ZDAS (federated learning with zero-shot data augmentation at the server).
arXiv Detail & Related papers (2021-04-27T18:23:54Z) - Exploiting Shared Representations for Personalized Federated Learning [54.65133770989836]
We propose a novel federated learning framework and algorithm for learning a shared data representation across clients and unique local heads for each client.
Our algorithm harnesses the distributed computational power across clients to perform many local-updates with respect to the low-dimensional local parameters for every update of the representation.
This result is of interest beyond federated learning to a broad class of problems in which we aim to learn a shared low-dimensional representation among data distributions.
arXiv Detail & Related papers (2021-02-14T05:36:25Z) - Decentralized Federated Learning via Mutual Knowledge Transfer [37.5341683644709]
Decentralized federated learning (DFL) is a problem in the Internet of things (IoT) systems.
We propose a mutual knowledge transfer (Def-KT) algorithm where local clients fuse models by transferring their learnt knowledge to each other.
Our experiments on the MNIST, Fashion-MNIST, and CIFAR10 datasets reveal datasets that the proposed Def-KT algorithm significantly outperforms the baseline DFL methods.
arXiv Detail & Related papers (2020-12-24T01:43:53Z) - Multi-Center Federated Learning [62.57229809407692]
This paper proposes a novel multi-center aggregation mechanism for federated learning.
It learns multiple global models from the non-IID user data and simultaneously derives the optimal matching between users and centers.
Our experimental results on benchmark datasets show that our method outperforms several popular federated learning methods.
arXiv Detail & Related papers (2020-05-03T09:14:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.