Mixed state geometric phase for neutrino oscillations
- URL: http://arxiv.org/abs/2008.07952v2
- Date: Fri, 11 Sep 2020 12:27:33 GMT
- Title: Mixed state geometric phase for neutrino oscillations
- Authors: Sandeep Joshi
- Abstract summary: The propagation of a neutrino beam is described by a density matrix evolving in a state space with non-trivial geometry.
We show that, in the case of two flavor neutrino oscillations, the geometric phase is independent of the Majorana phase and it can be used as a measure of coherence of the neutrino beam.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The geometric picture of neutrino oscillations offers a unique way to study
the quantum mechanics of this phenomenon. In this picture, the propagation of a
neutrino beam is described by a density matrix evolving in a state space with
non-trivial geometry. We derive explicit expressions of the mixed state
geometric phase which arise during such an evolution for both two and three
flavor neutrino oscillations. We show that, in the case of two flavor neutrino
oscillations, the geometric phase is independent of the Majorana phase and it
can be used as a measure of coherence of the neutrino beam.
Related papers
- Exploring entanglement and spectral split correlations in three-flavor collective neutrino oscillations [0.0]
We investigate the emergence of spectral splits in the three-flavor many-body collective neutrino oscillations.
We find that the emergence of spectral splits resembles the number and location found in the mean-field approximation but not in the width.
arXiv Detail & Related papers (2024-11-07T20:11:39Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Entanglement in three-flavor collective neutrino oscillations [0.0]
Extreme conditions in the interiors of the core-collapse supernovae make neutrino-neutrino interactions feasible but dominant in specific regions.
We present the first three flavor many-body calculations of the collective neutrino oscillations.
The entanglement is quantified in terms of the entanglement entropy and the components of the polarization vector.
arXiv Detail & Related papers (2022-11-14T19:00:37Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Role of non-gaussian quantum fluctuations in neutrino entanglement [0.0]
neutrino-neutrino coherent scattering can give rise to nontrivial quantum entanglement among neutrinos.
We observe that the entanglement induced by the coupling leads to strong delocalization in phase-space with largely non-Gaussian quantum fluctuations.
The link between the neutrino entanglement and quantum fluctuations is illustrated using the one- and two-neutrino entropy.
arXiv Detail & Related papers (2022-05-19T08:30:58Z) - Entanglement and correlations in fast collective neutrino flavor
oscillations [68.8204255655161]
Collective neutrino oscillations play a crucial role in transporting lepton flavor in astrophysical settings.
We study the full out-of-equilibrium flavor dynamics in simple multi-angle geometries displaying fast oscillations.
We present evidence that these fast collective modes are generated by the same dynamical phase transition.
arXiv Detail & Related papers (2022-03-05T17:00:06Z) - Triangular lattice quantum dimer model with variable dimer density [3.749673642775282]
We present large-scale quantum Monte Carlo simulation results on an extension of the triangular lattice quantum dimer model.
We find distinct odd and even $mathbbZ$ spin liquids, along with several phases with no topological order.
arXiv Detail & Related papers (2022-02-22T19:00:00Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Tri-Partite entanglement in Neutrino Oscillations [0.0]
We show that a monogamy inequality in terms of negativity leads to a residual entanglement, implying true tripartite entanglement in the three neutrino system.
This leads us to an analogy of the three neutrino state with a generalized class of W-state in quantum optics.
arXiv Detail & Related papers (2020-04-30T15:05:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.