Forecasting day-ahead electricity prices: A review of state-of-the-art
algorithms, best practices and an open-access benchmark
- URL: http://arxiv.org/abs/2008.08004v2
- Date: Mon, 21 Dec 2020 15:01:59 GMT
- Title: Forecasting day-ahead electricity prices: A review of state-of-the-art
algorithms, best practices and an open-access benchmark
- Authors: Jesus Lago, Grzegorz Marcjasz, Bart De Schutter, Rafa{\l} Weron
- Abstract summary: The field of electricity price forecasting has benefited from plenty of contributions in the last two decades.
The latter are often compared using unique, not publicly available datasets and across too short and limited to one market test samples.
It is not clear which methods perform well nor what are the best practices when forecasting electricity prices.
- Score: 14.377733907729072
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While the field of electricity price forecasting has benefited from plenty of
contributions in the last two decades, it arguably lacks a rigorous approach to
evaluating new predictive algorithms. The latter are often compared using
unique, not publicly available datasets and across too short and limited to one
market test samples. The proposed new methods are rarely benchmarked against
well established and well performing simpler models, the accuracy metrics are
sometimes inadequate and testing the significance of differences in predictive
performance is seldom conducted. Consequently, it is not clear which methods
perform well nor what are the best practices when forecasting electricity
prices. In this paper, we tackle these issues by performing a literature survey
of state-of-the-art models, comparing state-of-the-art statistical and deep
learning methods across multiple years and markets, and by putting forward a
set of best practices. In addition, we make available the considered datasets,
forecasts of the state-of-the-art models, and a specifically designed python
toolbox, so that new algorithms can be rigorously evaluated in future studies.
Related papers
- Confidence-based Estimators for Predictive Performance in Model Monitoring [0.5399800035598186]
After a machine learning model has been deployed into production, its predictive performance needs to be monitored.
Recently, novel methods for estimating the predictive performance of a model when ground truth is unavailable have been developed.
We show that under certain general assumptions, the Average Confidence (AC) method is an unbiased and consistent estimator of model accuracy.
arXiv Detail & Related papers (2024-07-11T16:28:31Z) - Forecasting with Deep Learning: Beyond Average of Average of Average Performance [0.393259574660092]
Current practices for evaluating and comparing forecasting models focus on summarising performance into a single score.
We propose a novel framework for evaluating models from multiple perspectives.
We show the advantages of this framework by comparing a state-of-the-art deep learning approach with classical forecasting techniques.
arXiv Detail & Related papers (2024-06-24T12:28:22Z) - Conservative Predictions on Noisy Financial Data [6.300716661852326]
Price movements in financial markets are well known to be very noisy.
Traditional rule-learning techniques would seek only high precision rules and refrain from making predictions where their antecedents did not apply.
We apply a similar approach, where a model abstains from making a prediction on data points that it is uncertain on.
arXiv Detail & Related papers (2023-10-18T09:14:19Z) - Evaluating Graph Neural Networks for Link Prediction: Current Pitfalls
and New Benchmarking [66.83273589348758]
Link prediction attempts to predict whether an unseen edge exists based on only a portion of edges of a graph.
A flurry of methods have been introduced in recent years that attempt to make use of graph neural networks (GNNs) for this task.
New and diverse datasets have also been created to better evaluate the effectiveness of these new models.
arXiv Detail & Related papers (2023-06-18T01:58:59Z) - Uncertainty-Aware Instance Reweighting for Off-Policy Learning [63.31923483172859]
We propose a Uncertainty-aware Inverse Propensity Score estimator (UIPS) for improved off-policy learning.
Experiment results on synthetic and three real-world recommendation datasets demonstrate the advantageous sample efficiency of the proposed UIPS estimator.
arXiv Detail & Related papers (2023-03-11T11:42:26Z) - Accounting for multiplicity in machine learning benchmark performance [0.0]
Using the highest-ranked performance as an estimate for state-of-the-art (SOTA) performance is a biased estimator, giving overly optimistic results.
In this article, we provide a probability distribution for the case of multiple classifiers so that known analyses methods can be engaged and a better SOTA estimate can be provided.
arXiv Detail & Related papers (2023-03-10T10:32:18Z) - Systematic Evaluation of Predictive Fairness [60.0947291284978]
Mitigating bias in training on biased datasets is an important open problem.
We examine the performance of various debiasing methods across multiple tasks.
We find that data conditions have a strong influence on relative model performance.
arXiv Detail & Related papers (2022-10-17T05:40:13Z) - Augmented Bilinear Network for Incremental Multi-Stock Time-Series
Classification [83.23129279407271]
We propose a method to efficiently retain the knowledge available in a neural network pre-trained on a set of securities.
In our method, the prior knowledge encoded in a pre-trained neural network is maintained by keeping existing connections fixed.
This knowledge is adjusted for the new securities by a set of augmented connections, which are optimized using the new data.
arXiv Detail & Related papers (2022-07-23T18:54:10Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Profit-oriented sales forecasting: a comparison of forecasting
techniques from a business perspective [3.613072342189595]
This paper compares a large array of techniques for 35 times series that consist of both industry data from the Coca-Cola Company and publicly available datasets.
It introduces a novel and completely automated profit-driven approach that takes into account the expected profit that a technique can create during both the model building and evaluation process.
arXiv Detail & Related papers (2020-02-03T14:50:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.