Systematic Evaluation of Predictive Fairness
- URL: http://arxiv.org/abs/2210.08758v1
- Date: Mon, 17 Oct 2022 05:40:13 GMT
- Title: Systematic Evaluation of Predictive Fairness
- Authors: Xudong Han, Aili Shen, Trevor Cohn, Timothy Baldwin, Lea Frermann
- Abstract summary: Mitigating bias in training on biased datasets is an important open problem.
We examine the performance of various debiasing methods across multiple tasks.
We find that data conditions have a strong influence on relative model performance.
- Score: 60.0947291284978
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mitigating bias in training on biased datasets is an important open problem.
Several techniques have been proposed, however the typical evaluation regime is
very limited, considering very narrow data conditions. For instance, the effect
of target class imbalance and stereotyping is under-studied. To address this
gap, we examine the performance of various debiasing methods across multiple
tasks, spanning binary classification (Twitter sentiment), multi-class
classification (profession prediction), and regression (valence prediction).
Through extensive experimentation, we find that data conditions have a strong
influence on relative model performance, and that general conclusions cannot be
drawn about method efficacy when evaluating only on standard datasets, as is
current practice in fairness research.
Related papers
- Rethinking Fair Representation Learning for Performance-Sensitive Tasks [19.40265690963578]
We use causal reasoning to define and formalise different sources of dataset bias.
We run experiments across a range of medical modalities to examine the performance of fair representation learning under distribution shifts.
arXiv Detail & Related papers (2024-10-05T11:01:16Z) - A Large-Scale Neutral Comparison Study of Survival Models on Low-Dimensional Data [7.199059106376138]
This work presents the first large-scale neutral benchmark experiment focused on single-event, right-censored, low-dimensional survival data.
We benchmark 18 models, ranging from classical statistical approaches to many common machine learning methods, on 32 publicly available datasets.
arXiv Detail & Related papers (2024-06-06T14:13:38Z) - Too Good To Be True: performance overestimation in (re)current practices
for Human Activity Recognition [49.1574468325115]
sliding windows for data segmentation followed by standard random k-fold cross validation produce biased results.
It is important to raise awareness in the scientific community about this problem, whose negative effects are being overlooked.
Several experiments with different types of datasets and different types of classification models allow us to exhibit the problem and show it persists independently of the method or dataset.
arXiv Detail & Related papers (2023-10-18T13:24:05Z) - Provable Detection of Propagating Sampling Bias in Prediction Models [1.7709344190822935]
We provide a theoretical analysis of how a specific form of data bias, differential sampling bias, propagates from the data stage to the prediction stage.
Under reasonable assumptions, we quantify how the amount of bias in the model predictions varies as a function of the amount of differential sampling bias in the data.
We demonstrate that the theoretical results hold in practice even when our assumptions are relaxed.
arXiv Detail & Related papers (2023-02-13T23:39:35Z) - On Modality Bias Recognition and Reduction [70.69194431713825]
We study the modality bias problem in the context of multi-modal classification.
We propose a plug-and-play loss function method, whereby the feature space for each label is adaptively learned.
Our method yields remarkable performance improvements compared with the baselines.
arXiv Detail & Related papers (2022-02-25T13:47:09Z) - Normalise for Fairness: A Simple Normalisation Technique for Fairness in Regression Machine Learning Problems [46.93320580613236]
We present a simple, yet effective method based on normalisation (FaiReg) for regression problems.
We compare it with two standard methods for fairness, namely data balancing and adversarial training.
The results show the superior performance of diminishing the effects of unfairness better than data balancing.
arXiv Detail & Related papers (2022-02-02T12:26:25Z) - Selecting the suitable resampling strategy for imbalanced data
classification regarding dataset properties [62.997667081978825]
In many application domains such as medicine, information retrieval, cybersecurity, social media, etc., datasets used for inducing classification models often have an unequal distribution of the instances of each class.
This situation, known as imbalanced data classification, causes low predictive performance for the minority class examples.
Oversampling and undersampling techniques are well-known strategies to deal with this problem by balancing the number of examples of each class.
arXiv Detail & Related papers (2021-12-15T18:56:39Z) - Through the Data Management Lens: Experimental Analysis and Evaluation
of Fair Classification [75.49600684537117]
Data management research is showing an increasing presence and interest in topics related to data and algorithmic fairness.
We contribute a broad analysis of 13 fair classification approaches and additional variants, over their correctness, fairness, efficiency, scalability, and stability.
Our analysis highlights novel insights on the impact of different metrics and high-level approach characteristics on different aspects of performance.
arXiv Detail & Related papers (2021-01-18T22:55:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.