Self-supervised Denoising via Diffeomorphic Template Estimation:
Application to Optical Coherence Tomography
- URL: http://arxiv.org/abs/2008.08024v1
- Date: Tue, 18 Aug 2020 16:52:10 GMT
- Title: Self-supervised Denoising via Diffeomorphic Template Estimation:
Application to Optical Coherence Tomography
- Authors: Guillaume Gisbert, Neel Dey, Hiroshi Ishikawa, Joel Schuman, James
Fishbaugh, Guido Gerig
- Abstract summary: We propose a joint diffeomorphic template estimation and denoising framework which enables the use of self-supervised denoising for motion deformed repeat acquisitions.
Strong qualitative and quantitative improvements are achieved in denoising OCT images, with generic utility in any imaging modality amenable to multiple exposures.
- Score: 6.197149831796131
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optical Coherence Tomography (OCT) is pervasive in both the research and
clinical practice of Ophthalmology. However, OCT images are strongly corrupted
by noise, limiting their interpretation. Current OCT denoisers leverage
assumptions on noise distributions or generate targets for training deep
supervised denoisers via averaging of repeat acquisitions. However, recent
self-supervised advances allow the training of deep denoising networks using
only repeat acquisitions without clean targets as ground truth, reducing the
burden of supervised learning. Despite the clear advantages of self-supervised
methods, their use is precluded as OCT shows strong structural deformations
even between sequential scans of the same subject due to involuntary eye
motion. Further, direct nonlinear alignment of repeats induces correlation of
the noise between images. In this paper, we propose a joint diffeomorphic
template estimation and denoising framework which enables the use of
self-supervised denoising for motion deformed repeat acquisitions, without
empirically registering their noise realizations. Strong qualitative and
quantitative improvements are achieved in denoising OCT images, with generic
utility in any imaging modality amenable to multiple exposures.
Related papers
- Self-supervised OCT Image Denoising with Slice-to-Slice Registration and
Reconstruction [5.972377737617966]
Learning-based self-supervised methods for structure-preserving noise reduction have demonstrated superior performance over traditional methods.
We introduce a new end-to-end self-supervised learning framework specifically tailored for OCT image denoising.
arXiv Detail & Related papers (2023-11-26T02:45:16Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - Self-supervised Physics-based Denoising for Computed Tomography [2.2758845733923687]
Computed Tomography (CT) imposes risk on the patients due to its inherent X-ray radiation.
Lowering the radiation dose reduces the health risks but leads to noisier measurements, which decreases the tissue contrast and causes artifacts in CT images.
Modern deep learning noise suppression methods alleviate the challenge but require low-noise-high-noise CT image pairs for training.
We introduce a new self-supervised approach for CT denoising Noise2NoiseTD-ANM that can be trained without the high-dose CT projection ground truth images.
arXiv Detail & Related papers (2022-11-01T20:58:50Z) - Zero-shot Blind Image Denoising via Implicit Neural Representations [77.79032012459243]
We propose an alternative denoising strategy that leverages the architectural inductive bias of implicit neural representations (INRs)
We show that our method outperforms existing zero-shot denoising methods under an extensive set of low-noise or real-noise scenarios.
arXiv Detail & Related papers (2022-04-05T12:46:36Z) - Unsupervised Denoising of Retinal OCT with Diffusion Probabilistic Model [0.2578242050187029]
We present a diffusion probabilistic model that is fully unsupervised to learn from noise instead of signal.
Our method can significantly improve the image quality with a simple working pipeline and a small amount of training data.
arXiv Detail & Related papers (2022-01-27T19:02:38Z) - ISCL: Interdependent Self-Cooperative Learning for Unpaired Image
Denoising [3.796436257221662]
We propose a novel image denoising scheme, Interdependent Self-Cooperative Learning (ISCL)
ISCL combines cyclic adversarial learning with self-supervised residual learning.
We demonstrate that ISCL is superior to conventional and current state-of-the-art deep learning-based image denoising methods.
arXiv Detail & Related papers (2021-02-19T10:54:25Z) - Suppression of Correlated Noise with Similarity-based Unsupervised Deep
Learning [7.61850613267116]
Noise2Sim is an unsupervised deep denoising approach that works in a nonlocal nonlinear fashion to suppress correlated noises.
Nosie2Sim recovers features from noisy low-dose and photon-counting CT images as effectively as or even better than supervised learning methods.
arXiv Detail & Related papers (2020-11-06T14:31:08Z) - Unpaired Learning of Deep Image Denoising [80.34135728841382]
This paper presents a two-stage scheme by incorporating self-supervised learning and knowledge distillation.
For self-supervised learning, we suggest a dilated blind-spot network (D-BSN) to learn denoising solely from real noisy images.
Experiments show that our unpaired learning method performs favorably on both synthetic noisy images and real-world noisy photographs.
arXiv Detail & Related papers (2020-08-31T16:22:40Z) - Improving Blind Spot Denoising for Microscopy [73.94017852757413]
We present a novel way to improve the quality of self-supervised denoising.
We assume the clean image to be the result of a convolution with a point spread function (PSF) and explicitly include this operation at the end of our neural network.
arXiv Detail & Related papers (2020-08-19T13:06:24Z) - Dual Adversarial Network: Toward Real-world Noise Removal and Noise
Generation [52.75909685172843]
Real-world image noise removal is a long-standing yet very challenging task in computer vision.
We propose a novel unified framework to deal with the noise removal and noise generation tasks.
Our method learns the joint distribution of the clean-noisy image pairs.
arXiv Detail & Related papers (2020-07-12T09:16:06Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
Blind image denoising is an important yet very challenging problem in computer vision.
We propose a new variational inference method, which integrates both noise estimation and image denoising.
arXiv Detail & Related papers (2019-08-29T15:54:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.