Variational Denoising Network: Toward Blind Noise Modeling and Removal
- URL: http://arxiv.org/abs/1908.11314v5
- Date: Fri, 1 Sep 2023 04:37:22 GMT
- Title: Variational Denoising Network: Toward Blind Noise Modeling and Removal
- Authors: Zongsheng Yue, Hongwei Yong, Qian Zhao, Lei Zhang and Deyu Meng
- Abstract summary: Blind image denoising is an important yet very challenging problem in computer vision.
We propose a new variational inference method, which integrates both noise estimation and image denoising.
- Score: 59.36166491196973
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Blind image denoising is an important yet very challenging problem in
computer vision due to the complicated acquisition process of real images. In
this work we propose a new variational inference method, which integrates both
noise estimation and image denoising into a unique Bayesian framework, for
blind image denoising. Specifically, an approximate posterior, parameterized by
deep neural networks, is presented by taking the intrinsic clean image and
noise variances as latent variables conditioned on the input noisy image. This
posterior provides explicit parametric forms for all its involved
hyper-parameters, and thus can be easily implemented for blind image denoising
with automatic noise estimation for the test noisy image. On one hand, as other
data-driven deep learning methods, our method, namely variational denoising
network (VDN), can perform denoising efficiently due to its explicit form of
posterior expression. On the other hand, VDN inherits the advantages of
traditional model-driven approaches, especially the good generalization
capability of generative models. VDN has good interpretability and can be
flexibly utilized to estimate and remove complicated non-i.i.d. noise collected
in real scenarios. Comprehensive experiments are performed to substantiate the
superiority of our method in blind image denoising.
Related papers
- Self-Calibrated Variance-Stabilizing Transformations for Real-World Image Denoising [19.08732222562782]
Supervised deep learning has become the method of choice for image denoising.
We show that, contrary to popular belief, denoising networks specialized in the removal of Gaussian noise can be efficiently leveraged in favor of real-world image denoising.
arXiv Detail & Related papers (2024-07-24T16:23:46Z) - Stimulating the Diffusion Model for Image Denoising via Adaptive Embedding and Ensembling [56.506240377714754]
We present a novel strategy called the Diffusion Model for Image Denoising (DMID)
Our strategy includes an adaptive embedding method that embeds the noisy image into a pre-trained unconditional diffusion model.
Our DMID strategy achieves state-of-the-art performance on both distortion-based and perception-based metrics.
arXiv Detail & Related papers (2023-07-08T14:59:41Z) - Masked Image Training for Generalizable Deep Image Denoising [53.03126421917465]
We present a novel approach to enhance the generalization performance of denoising networks.
Our method involves masking random pixels of the input image and reconstructing the missing information during training.
Our approach exhibits better generalization ability than other deep learning models and is directly applicable to real-world scenarios.
arXiv Detail & Related papers (2023-03-23T09:33:44Z) - I2V: Towards Texture-Aware Self-Supervised Blind Denoising using
Self-Residual Learning for Real-World Images [8.763680382529412]
pixel-shuffle downsampling (PD) has been proposed to eliminate the spatial correlation of noise.
We propose self-residual learning without the PD process to maintain texture information.
The results of extensive experiments show that the proposed method outperforms state-of-the-art self-supervised blind denoising approaches.
arXiv Detail & Related papers (2023-02-21T08:51:17Z) - Enhancing convolutional neural network generalizability via low-rank weight approximation [6.763245393373041]
Sufficient denoising is often an important first step for image processing.
Deep neural networks (DNNs) have been widely used for image denoising.
We introduce a new self-supervised framework for image denoising based on the Tucker low-rank tensor approximation.
arXiv Detail & Related papers (2022-09-26T14:11:05Z) - Robust Deep Ensemble Method for Real-world Image Denoising [62.099271330458066]
We propose a simple yet effective Bayesian deep ensemble (BDE) method for real-world image denoising.
Our BDE achieves +0.28dB PSNR gain over the state-of-the-art denoising method.
Our BDE can be extended to other image restoration tasks, and achieves +0.30dB, +0.18dB and +0.12dB PSNR gains on benchmark datasets.
arXiv Detail & Related papers (2022-06-08T06:19:30Z) - Image Denoising using Attention-Residual Convolutional Neural Networks [0.0]
We propose a new learning-based non-blind denoising technique named Attention Residual Convolutional Neural Network (ARCNN) and its extension to blind denoising named Flexible Attention Residual Convolutional Neural Network (FARCNN)
ARCNN achieved an overall average PSNR results of around 0.44dB and 0.96dB for Gaussian and Poisson denoising, respectively FARCNN presented very consistent results, even with slightly worsen performance compared to ARCNN.
arXiv Detail & Related papers (2021-01-19T16:37:57Z) - Neighbor2Neighbor: Self-Supervised Denoising from Single Noisy Images [98.82804259905478]
We present Neighbor2Neighbor to train an effective image denoising model with only noisy images.
In detail, input and target used to train a network are images sub-sampled from the same noisy image.
A denoising network is trained on sub-sampled training pairs generated in the first stage, with a proposed regularizer as additional loss for better performance.
arXiv Detail & Related papers (2021-01-08T02:03:25Z) - Noise2Kernel: Adaptive Self-Supervised Blind Denoising using a Dilated
Convolutional Kernel Architecture [3.796436257221662]
We propose a dilated convolutional network that satisfies an invariant property, allowing efficient kernel-based training without random masking.
We also propose an adaptive self-supervision loss to circumvent the requirement of zero-mean constraint, which is specifically effective in removing salt-and-pepper or hybrid noise.
arXiv Detail & Related papers (2020-12-07T12:13:17Z) - Fully Unsupervised Diversity Denoising with Convolutional Variational
Autoencoders [81.30960319178725]
We propose DivNoising, a denoising approach based on fully convolutional variational autoencoders (VAEs)
First we introduce a principled way of formulating the unsupervised denoising problem within the VAE framework by explicitly incorporating imaging noise models into the decoder.
We show that such a noise model can either be measured, bootstrapped from noisy data, or co-learned during training.
arXiv Detail & Related papers (2020-06-10T21:28:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.