論文の概要: Robust Handwriting Recognition with Limited and Noisy Data
- arxiv url: http://arxiv.org/abs/2008.08148v1
- Date: Tue, 18 Aug 2020 20:33:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-27 21:03:42.553105
- Title: Robust Handwriting Recognition with Limited and Noisy Data
- Title(参考訳): 限定データと雑音データを用いたロバスト手書き認識
- Authors: Hai Pham, Amrith Setlur, Saket Dingliwal, Tzu-Hsiang Lin, Barnabas
Poczos, Kang Huang, Zhuo Li, Jae Lim, Collin McCormack, Tam Vu
- Abstract要約: 私たちはメンテナンスログから手書き文字を学習することに重点を置いています。
この問題を単語分割と単語認識の2段階に分割し,データ拡張技術を用いて両段階を訓練する。
本システムは誤り率を低くし,ノイズや難解な文書を扱うのに適している。
- 参考スコア(独自算出の注目度): 7.617456558732551
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the advent of deep learning in computer vision, the general
handwriting recognition problem is far from solved. Most existing approaches
focus on handwriting datasets that have clearly written text and carefully
segmented labels. In this paper, we instead focus on learning handwritten
characters from maintenance logs, a constrained setting where data is very
limited and noisy. We break the problem into two consecutive stages of word
segmentation and word recognition respectively and utilize data augmentation
techniques to train both stages. Extensive comparisons with popular baselines
for scene-text detection and word recognition show that our system achieves a
lower error rate and is more suited to handle noisy and difficult documents
- Abstract(参考訳): コンピュータビジョンにおけるディープラーニングの出現にもかかわらず、一般的な手書き認識問題は解決には程遠い。
既存のアプローチのほとんどは、明確なテキストと慎重に分割されたラベルを持つ手書きデータセットに焦点を当てている。
本稿では,保守ログから手書き文字を学習することに集中する。
問題を単語分割と単語認識の2つの段階に分け,データ拡張技術を用いて両方の段階を訓練する。
シーンテキスト検出および単語認識のための一般的なベースラインとの比較により,本システムは誤り率を低くし,難易度の高い文書を扱うのに適していることが示された。
関連論文リスト
- Learning Robust Named Entity Recognizers From Noisy Data With Retrieval Augmentation [67.89838237013078]
名前付きエンティティ認識(NER)モデルは、しばしばノイズの多い入力に悩まされる。
ノイズの多いテキストとそのNERラベルのみを利用できる、より現実的な設定を提案する。
我々は、推論中にテキストを取得することなく、堅牢なNERを改善するマルチビュートレーニングフレームワークを採用している。
論文 参考訳(メタデータ) (2024-07-26T07:30:41Z) - GatedLexiconNet: A Comprehensive End-to-End Handwritten Paragraph Text Recognition System [3.9527064697847005]
内部線分割と畳み込み層に基づくエンコーダを組み込んだエンドツーエンドの段落認識システムを提案する。
本研究は、IAMでは2.27%、RIMESでは0.9%、READ-16では2.13%、READ-2016データセットでは5.73%の文字誤り率を報告した。
論文 参考訳(メタデータ) (2024-04-22T10:19:16Z) - Efficiently Leveraging Linguistic Priors for Scene Text Spotting [63.22351047545888]
本稿では,大規模テキストコーパスから言語知識を活用する手法を提案する。
シーンテキストデータセットとよく一致したテキスト分布を生成し、ドメイン内の微調整の必要性を取り除く。
実験結果から,本手法は認識精度を向上するだけでなく,単語のより正確な局所化を可能にすることが示された。
論文 参考訳(メタデータ) (2024-02-27T01:57:09Z) - Impact of Ground Truth Quality on Handwriting Recognition [0.5328877196581558]
ブルリンジャーのデータベースには、主に近代以前のドイツ語とラテン語のテキストの1万以上のラベル付きテキストラインイメージが含まれている。
本稿では,そのような誤りがトレーニングや評価に与える影響を調査し,典型的なアライメント誤りを検出し,修正する手段を提案する。
論文 参考訳(メタデータ) (2023-12-14T15:36:41Z) - Handwritten and Printed Text Segmentation: A Signature Case Study [0.0]
我々は手書きテキストセグメンテーションの課題に対処するための新しいアプローチを開発する。
我々の目的は、クラス全体からテキストを復元することであり、特に重なり合う部分のセグメンテーション性能を向上させることである。
私たちの最高の設定は、以前の2つの異なるデータセットで17.9%、IoUスコアで7.3%のパフォーマンスを上回っています。
論文 参考訳(メタデータ) (2023-07-15T21:49:22Z) - Towards Unsupervised Recognition of Token-level Semantic Differences in
Related Documents [61.63208012250885]
意味的差異をトークンレベルの回帰タスクとして認識する。
マスク付き言語モデルに依存する3つの教師なしアプローチについて検討する。
その結果,単語アライメントと文レベルのコントラスト学習に基づくアプローチは,ゴールドラベルと強い相関関係があることが示唆された。
論文 参考訳(メタデータ) (2023-05-22T17:58:04Z) - An end-to-end, interactive Deep Learning based Annotation system for
cursive and print English handwritten text [0.0]
我々は、印刷版とカーシブ版の両方で書かれたオフライン手書きの原稿に注釈を付ける、革新的で完全なエンドツーエンドパイプラインを提示する。
本手法は,最先端のテキスト検出モデルに基づいて構築された検出システムと,認識システムのための独自のDeep Learningモデルとのアーキテクチャ結合を含む。
論文 参考訳(メタデータ) (2023-04-18T00:24:07Z) - Learning Semantic Correspondence with Sparse Annotations [66.37298464505261]
密接な意味的対応を見つけることは、コンピュータビジョンの基本的な問題である。
本研究では,高密度な擬似ラベルを生成するための教師学習パラダイムを提案する。
また、擬似ラベルを識別するための2つの新しい戦略も開発している。
論文 参考訳(メタデータ) (2022-08-15T02:24:18Z) - Text-DIAE: Degradation Invariant Autoencoders for Text Recognition and
Document Enhancement [8.428866479825736]
Text-DIAEは、テキスト認識(手書きまたはシーンテキスト)と文書画像強調という2つの課題を解決することを目的としている。
ラベル付きデータを使わずに事前学習時に最適化すべき学習目標として、3つのプレテキストタスクを定義した。
本手法は,既存の教師付きおよび自己監督型設定において,最先端の手法をはるかに超えている。
論文 参考訳(メタデータ) (2022-03-09T15:44:36Z) - SmartPatch: Improving Handwritten Word Imitation with Patch
Discriminators [67.54204685189255]
本稿では,現在の最先端手法の性能を向上させる新手法であるSmartPatchを提案する。
我々は、よく知られたパッチ損失と、平行訓練された手書きテキスト認識システムから収集された情報を組み合わせる。
これにより、より強化された局所識別器が実現し、より現実的で高品質な手書き文字が生成される。
論文 参考訳(メタデータ) (2021-05-21T18:34:21Z) - TextScanner: Reading Characters in Order for Robust Scene Text
Recognition [60.04267660533966]
TextScannerはシーンテキスト認識の代替手法である。
文字クラス、位置、順序に対する画素単位のマルチチャネルセグメンテーションマップを生成する。
また、コンテキストモデリングにRNNを採用し、文字の位置とクラスを並列で予測する。
論文 参考訳(メタデータ) (2019-12-28T07:52:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。