All-optical phase-sensitive detection for ultra-fast quantum computation
- URL: http://arxiv.org/abs/2008.08216v2
- Date: Thu, 20 Aug 2020 02:07:19 GMT
- Title: All-optical phase-sensitive detection for ultra-fast quantum computation
- Authors: Naoto Takanashi, Asuka Inoue, Takahiro Kashiwazaki, Takushi Kazama,
Koji Enbutsu, Ryoichi Kasahara, Takeshi Umeki, Akira Furusawa
- Abstract summary: bandwidth of conventional electrical phase-sensitive detectors is up to several gigahertz.
It is theoretically proposed to realize terahertz-order detection bandwidth by using all-optical phase-sensitive detection.
We adopt a fiber-coupled $chi(2)$ OPA made of a periodically poled LiNbO$_3$ waveguide with high durability for intense continuous-wave pump light.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Phase-sensitive detection is the essential projective measurement for
measurement-based continuous-variable quantum information processing. The
bandwidth of conventional electrical phase-sensitive detectors is up to several
gigahertz, which would limit the speed of quantum computation. It is
theoretically proposed to realize terahertz-order detection bandwidth by using
all-optical phase-sensitive detection with an optical parametric amplifier
(OPA). However, there have been experimental obstacles to achieve large
parametric gain for continuous waves, which is required for use in quantum
computation. Here, we adopt a fiber-coupled $\chi^{(2)}$ OPA made of a
periodically poled LiNbO${}_{3}$ waveguide with high durability for intense
continuous-wave pump light. Thanks to that, we manage to detect quadrature
amplitudes of broadband continuous-wave squeezed light. 3 dB of squeezing is
measured up to 3 THz of sideband frequency with an optical spectrum analyzer.
Furthermore, we demonstrate the phase-locking and dispersion compensation of
the broadband continuous-wave squeezed light, so that the phase of the squeezed
light is maintained over 1 THz. The ultra-broadband continuous-wave detection
method and dispersion compensation would help to realize all-optical quantum
computation with over-THz clock frequency.
Related papers
- Squeezed dual-comb spectroscopy [32.73124984242397]
Squeezing the distribution of quantum noise to enhance measurement precision of either the amplitude or phase quadrature of an optical field leads to significant measurement improvements with continuous wave lasers.
Interferometry with a second coherent state frequency comb yields mode-resolved spectroscopy of hydrogen sulfide gas with a signal-to-noise ratio nearly 3 dB beyond the shot noise limit.
The quantum noise reduction leads to a two-fold quantum speedup in the determination of gas concentration, with impact for fast, broadband, and high SNR ratio measurements of multiple species in dynamic chemical environments.
arXiv Detail & Related papers (2024-08-29T16:36:23Z) - How to use the dispersion in the $χ^{(3)}$ tensor for broadband generation of polarization-entangled photons [0.0]
Polarization-entangled photon pairs are a widely used resource in quantum optics and technologies.
We show broadband (tens of THz for each photon) generation of polarization-entangled photon pairs by spontaneous four-wave mixing in a diamond crystal.
arXiv Detail & Related papers (2024-08-21T09:43:23Z) - Integrated, bright, broadband parametric down-conversion source for
quantum metrology and spectroscopy [0.0]
In this work we demonstrate an integrated two-colour SPDC source utilising a group-velocity matched lithium niobate waveguide.
By converting a narrow band pump to broadband pulses the created photon pairs show correlation times of $Delta tau approx 120,textfs$ while maintaining the narrow bandwidth $Delta omega_p ll 1,textMHz$ of the CW pump light, yielding strong time-frequency entanglement.
arXiv Detail & Related papers (2024-02-27T13:57:16Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Non-Gaussian quantum state generation by multi-photon subtraction at the
telecommunication wavelength [0.8013991054257982]
We present the generation of non-Gaussian states on wave packets with a short 8-ps duration in the 1545.32 nm telecommunication wavelength band using photon subtraction up to three photons.
Results can be extended to the generation of more complicated non-Gaussian states and are a key technology in the pursuit of high-speed optical quantum computation.
arXiv Detail & Related papers (2023-01-24T09:13:36Z) - Integrated Quantum Optical Phase Sensor [48.7576911714538]
We present a photonic integrated circuit fabricated in thin-film lithium niobate.
We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics.
We anticipate that on-chip photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.
arXiv Detail & Related papers (2022-12-19T18:46:33Z) - Picosecond Pulsed Squeezing in Thin-Film Lithium Niobate Strip-Loaded
Waveguides at Telecommunication Wavelengths [52.77024349608834]
We show quadrature squeezing of picosecond pulses in a thin-film lithium niobate strip-loaded waveguide.
This work highlights the potential of the strip-loaded waveguide platform for broadband squeezing applications.
arXiv Detail & Related papers (2022-04-12T10:42:19Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Complete conversion between one and two photons in nonlinear waveguides
with tailored dispersion [62.997667081978825]
We show theoretically how to control coherent conversion between a narrow-band pump photon and broadband photon pairs in nonlinear optical waveguides.
We reveal that complete deterministic conversion as well as pump-photon revival can be achieved at a finite propagation distance.
arXiv Detail & Related papers (2021-10-06T23:49:44Z) - Frequency-Domain Quantum Interference with Correlated Photons from an
Integrated Microresonator [96.25398432840109]
We report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator.
Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain.
arXiv Detail & Related papers (2020-03-14T01:48:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.