Broadband Fourier transform spectroscopy of quantum emitters photoluminescence with sub-nanosecond temporal resolution
- URL: http://arxiv.org/abs/2504.15258v1
- Date: Mon, 21 Apr 2025 17:38:20 GMT
- Title: Broadband Fourier transform spectroscopy of quantum emitters photoluminescence with sub-nanosecond temporal resolution
- Authors: Issam Belgacem, Pasquale Cilibrizzi, Muhammad Junaid Arshad, Daniel White, Malte Kroj, Christiaan Bekker, Margherita Mazzera, Brian D. Gerardot, Angelo C. Frangeskou, Gavin W. Morley, Nguyen Tien Son, Jawad Ul-Hassan, Takeshi Ohshima, Hiroshi Abe, Lorenzo Vinco, Dario Polli, Giulio Cerullo, Cristian Bonato,
- Abstract summary: We experimentally demonstrate that the system enables spectroscopy of quantum emitters over a broad wavelength interval from the near-infrared to the telecom range.<n>The high temporal resolution of single-photon detectors, which can be on the order of tens of picoseconds, enables the monitoring of spin-dependent spectral changes on sub-nanosecond timescales.
- Score: 0.6127128845694289
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The spectral characterization of quantum emitter luminescence over broad wavelength ranges and fast timescales is important for applications ranging from biophysics to quantum technologies. Here we present the application of time-domain Fourier transform spectroscopy, based on a compact and stable birefringent interferometer coupled to low-dark-count superconducting single-photon detectors, to the study of quantum emitters. We experimentally demonstrate that the system enables spectroscopy of quantum emitters over a broad wavelength interval from the near-infrared to the telecom range, where grating-based spectrometers coupled to InGaAs cameras are typically noisy and inefficient. We further show that the high temporal resolution of single-photon detectors, which can be on the order of tens of picoseconds, enables the monitoring of spin-dependent spectral changes on sub-nanosecond timescales.
Related papers
- Capturing the spectrotemporal structure of a biphoton wave packet with delay-line-anode single-photon imagers [0.0]
We present a novel photon-detection technique to achieve a significantly more efficient measurement of frequency-entangled biphoton.
Our technique paves the way for all experiments in multi-mode quantum science requiring coincidence measurement.
arXiv Detail & Related papers (2024-07-23T03:24:47Z) - Super-resolution of ultrafast pulses via spectral inversion [0.0]
We experimentally demonstrate a spectroscopic super-resolution method aimed at broadband light (10s to 100s of GHz)
We study the paradigmatic problem of estimating a small separation between two incoherent spectral features of equal brightness, with a small number of photons per coherence time.
The setup is based on an actively stabilized Mach-Zehnder-type interferometer with electro-optic time lenses and passive spectral dispersers implementing the inversion.
arXiv Detail & Related papers (2024-03-18T12:21:37Z) - High-dimensional quantum correlation measurements with an adaptively
gated hybrid single-photon camera [58.720142291102135]
We propose an adaptively-gated hybrid intensified camera (HIC) that combines a high spatial resolution sensor and a high temporal resolution detector.
With a spatial resolution of nearly 9 megapixels and nanosecond temporal resolution, this system allows for the realization of previously infeasible quantum optics experiments.
arXiv Detail & Related papers (2023-05-25T16:59:27Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Spectral multiplexing of telecom emitters with stable transition
frequency [68.8204255655161]
coherent emitters can be entangled over large distances using photonic channels.
We observe around 100 individual erbium emitters using a Fabry-Perot resonator with an embedded 19 micrometer thin crystalline membrane.
Our results constitute an important step towards frequency-multiplexed quantum-network nodes operating directly at a telecommunication wavelength.
arXiv Detail & Related papers (2021-10-18T15:39:07Z) - High Speed Imaging of Spectral-Temporal Correlations in Hong-Ou-Mandel
Interference [0.0]
In this work we demonstrate spectral-temporal correlation measurements of the Hong-Ou-Mandel (HOM) interference effect with the use of a spectrometer based on a photon-counting camera.
This setup allows us to take, within seconds, spectral temporal correlation measurements on entangled photon sources with sub-nanometer spectral resolution and nanosecond timing resolution.
arXiv Detail & Related papers (2021-05-19T22:55:20Z) - Auto-heterodyne characterization of narrow-band photon pairs [68.8204255655161]
We describe a technique to measure photon pair joint spectra by detecting the time-correlation beat note when non-degenerate photon pairs interfere at a beamsplitter.
The technique is well suited to characterize pairs of photons, each of which can interact with a single atomic species.
arXiv Detail & Related papers (2021-01-08T18:21:30Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Probing excited-state dynamics with quantum entangled photons:
Correspondence to coherent multidimensional spectroscopy [0.0]
Quantum light is a key resource for promoting quantum technology.
One such class of technology aims to improve the precision of optical measurements using engineered quantum states of light.
arXiv Detail & Related papers (2020-05-22T03:22:44Z) - Remotely projecting states of photonic temporal modes [0.0]
We show remote spectral shaping of single photon states and probe the coherence properties of two-photon quantum correlations in the time-frequency domain.
We control the temporal mode structure between the generated photon pairs and show remote state-projections over a range of time-frequency mode superpositions.
arXiv Detail & Related papers (2020-04-22T22:38:46Z) - Frequency-Domain Quantum Interference with Correlated Photons from an
Integrated Microresonator [96.25398432840109]
We report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator.
Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain.
arXiv Detail & Related papers (2020-03-14T01:48:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.