Salient Instance Segmentation with Region and Box-level Annotations
- URL: http://arxiv.org/abs/2008.08246v3
- Date: Wed, 28 Apr 2021 07:38:49 GMT
- Title: Salient Instance Segmentation with Region and Box-level Annotations
- Authors: Jialun Pei, He Tang, Tianyang Cheng, Chuanbo Chen
- Abstract summary: New generation of saliency detection provides strong theoretical and technical basis for video surveillance.
Due to the limited scale of the existing dataset and the high mask annotations cost, plenty of supervision source is urgently needed to train a well-performing salient instance model.
We propose a novel salient instance segmentation framework by an inexact supervision without resorting to laborious labeling.
- Score: 3.1458035003538884
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Salient instance segmentation is a new challenging task that received
widespread attention in the saliency detection area. The new generation of
saliency detection provides a strong theoretical and technical basis for video
surveillance. Due to the limited scale of the existing dataset and the high
mask annotations cost, plenty of supervision source is urgently needed to train
a well-performing salient instance model. In this paper, we aim to train a
novel salient instance segmentation framework by an inexact supervision without
resorting to laborious labeling. To this end, we present a cyclic global
context salient instance segmentation network (CGCNet), which is supervised by
the combination of salient regions and bounding boxes from the ready-made
salient object detection datasets. To locate salient instance more accurately,
a global feature refining layer is proposed that dilates the features of the
region of interest (ROI) to the global context in a scene. Meanwhile, a
labeling updating scheme is embedded in the proposed framework to update the
coarse-grained labels for next iteration. Experiment results demonstrate that
the proposed end-to-end framework trained by inexact supervised annotations can
be competitive to the existing fully supervised salient instance segmentation
methods. Without bells and whistles, our proposed method achieves a mask AP of
58.3% in the test set of Dataset1K that outperforms the mainstream
state-of-the-art methods.
Related papers
- Weakly-Supervised Cross-Domain Segmentation of Electron Microscopy with Sparse Point Annotation [1.124958340749622]
We introduce a multitask learning framework to leverage correlations among the counting, detection, and segmentation tasks.
We develop a cross-position cut-and-paste for label augmentation and an entropy-based pseudo-label selection.
The proposed model is capable of significantly outperforming UDA methods and produces comparable performance as the supervised counterpart.
arXiv Detail & Related papers (2024-03-31T12:22:23Z) - Weakly Supervised Open-Vocabulary Object Detection [31.605276665964787]
We propose a novel weakly supervised open-vocabulary object detection framework, namely WSOVOD, to extend traditional WSOD.
To achieve this, we explore three vital strategies, including dataset-level feature adaptation, image-level salient object localization, and region-level vision-language alignment.
arXiv Detail & Related papers (2023-12-19T18:59:53Z) - PWISeg: Point-based Weakly-supervised Instance Segmentation for Surgical
Instruments [27.89003436883652]
We propose a weakly-supervised surgical instrument segmentation approach, named Point-based Weakly-supervised Instance (PWISeg)
PWISeg adopts an FCN-based architecture with point-to-box and point-to-mask branches to model the relationships between feature points and bounding boxes.
Based on this, we propose a key pixel association loss and a key pixel distribution loss, driving the point-to-mask branch to generate more accurate segmentation predictions.
arXiv Detail & Related papers (2023-11-16T11:48:29Z) - Solve the Puzzle of Instance Segmentation in Videos: A Weakly Supervised
Framework with Spatio-Temporal Collaboration [13.284951215948052]
We present a novel weakly supervised framework with textbfS-patiotextbfTemporal textbfClaboration for instance textbfSegmentation in videos.
Our method achieves strong performance and even outperforms fully supervised TrackR-CNN and MaskTrack R-CNN.
arXiv Detail & Related papers (2022-12-15T02:44:13Z) - Collaborative Propagation on Multiple Instance Graphs for 3D Instance
Segmentation with Single-point Supervision [63.429704654271475]
We propose a novel weakly supervised method RWSeg that only requires labeling one object with one point.
With these sparse weak labels, we introduce a unified framework with two branches to propagate semantic and instance information.
Specifically, we propose a Cross-graph Competing Random Walks (CRW) algorithm that encourages competition among different instance graphs.
arXiv Detail & Related papers (2022-08-10T02:14:39Z) - Learning to Detect Instance-level Salient Objects Using Complementary
Image Labels [55.049347205603304]
We present the first weakly-supervised approach to the salient instance detection problem.
We propose a novel weakly-supervised network with three branches: a Saliency Detection Branch leveraging class consistency information to locate candidate objects; a Boundary Detection Branch exploiting class discrepancy information to delineate object boundaries; and a Centroid Detection Branch using subitizing information to detect salient instance centroids.
arXiv Detail & Related papers (2021-11-19T10:15:22Z) - Semantic Attention and Scale Complementary Network for Instance
Segmentation in Remote Sensing Images [54.08240004593062]
We propose an end-to-end multi-category instance segmentation model, which consists of a Semantic Attention (SEA) module and a Scale Complementary Mask Branch (SCMB)
SEA module contains a simple fully convolutional semantic segmentation branch with extra supervision to strengthen the activation of interest instances on the feature map.
SCMB extends the original single mask branch to trident mask branches and introduces complementary mask supervision at different scales.
arXiv Detail & Related papers (2021-07-25T08:53:59Z) - WSSOD: A New Pipeline for Weakly- and Semi-Supervised Object Detection [75.80075054706079]
We propose a weakly- and semi-supervised object detection framework (WSSOD)
An agent detector is first trained on a joint dataset and then used to predict pseudo bounding boxes on weakly-annotated images.
The proposed framework demonstrates remarkable performance on PASCAL-VOC and MSCOCO benchmark, achieving a high performance comparable to those obtained in fully-supervised settings.
arXiv Detail & Related papers (2021-05-21T11:58:50Z) - Weakly-supervised Salient Instance Detection [65.0408760733005]
We present the first weakly-supervised approach to the salient instance detection problem.
We propose a novel weakly-supervised network with three branches: a Saliency Detection Branch leveraging class consistency information to locate candidate objects; a Boundary Detection Branch exploiting class discrepancy information to delineate object boundaries; and a Centroid Detection Branch using subitizing information to detect salient instance centroids.
arXiv Detail & Related papers (2020-09-29T09:47:23Z) - UniT: Unified Knowledge Transfer for Any-shot Object Detection and
Segmentation [52.487469544343305]
Methods for object detection and segmentation rely on large scale instance-level annotations for training.
We propose an intuitive and unified semi-supervised model that is applicable to a range of supervision.
arXiv Detail & Related papers (2020-06-12T22:45:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.