Leveraging Historical Interaction Data for Improving Conversational
Recommender System
- URL: http://arxiv.org/abs/2008.08247v1
- Date: Wed, 19 Aug 2020 03:43:50 GMT
- Title: Leveraging Historical Interaction Data for Improving Conversational
Recommender System
- Authors: Kun Zhou, Wayne Xin Zhao, Hui Wang, Sirui Wang, Fuzheng Zhang,
Zhongyuan Wang and Ji-Rong Wen
- Abstract summary: We propose a novel pre-training approach to integrate item- and attribute-based preference sequence.
Experiment results on two real-world datasets have demonstrated the effectiveness of our approach.
- Score: 105.90963882850265
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, conversational recommender system (CRS) has become an emerging and
practical research topic. Most of the existing CRS methods focus on learning
effective preference representations for users from conversation data alone.
While, we take a new perspective to leverage historical interaction data for
improving CRS. For this purpose, we propose a novel pre-training approach to
integrating both item-based preference sequence (from historical interaction
data) and attribute-based preference sequence (from conversation data) via
pre-training methods. We carefully design two pre-training tasks to enhance
information fusion between item- and attribute-based preference. To improve the
learning performance, we further develop an effective negative sample generator
which can produce high-quality negative samples. Experiment results on two
real-world datasets have demonstrated the effectiveness of our approach for
improving CRS.
Related papers
- Leveraging Knowledge Graph Embedding for Effective Conversational Recommendation [4.079573593766921]
We propose a knowledge graph based conversational recommender system (referred as KG-CRS)
Specifically, we first integrate the user-item graph and item-attribute graph into a dynamic graph, dynamically changing during the dialogue process by removing negative items or attributes.
We then learn informative embedding of users, items, and attributes by also considering propagation through neighbors on the graph.
arXiv Detail & Related papers (2024-08-02T15:38:55Z) - Improving Conversational Recommendation Systems via Bias Analysis and
Language-Model-Enhanced Data Augmentation [28.349599213528627]
Conversational Recommendation System (CRS) is a rapidly growing research area that has gained significant attention alongside advancements in language modelling techniques.
In this study, we delve into benchmark datasets for developing CRS models and address potential biases arising from the feedback loop inherent in multi-turn interactions.
We present two novel strategies, 'Once-Aug' and 'PopNudge', to enhance model performance while mitigating biases.
arXiv Detail & Related papers (2023-10-25T16:11:55Z) - Alleviating the Long-Tail Problem in Conversational Recommender Systems [72.8984755843184]
Conversational recommender systems (CRS) aim to provide the recommendation service via natural language conversations.
Existing CRS datasets suffer from the long-tail issue, ie a large proportion of items are rarely (or even never) mentioned in the conversations.
This paper presents textbfLOT-CRS, a novel framework that focuses on simulating and utilizing a balanced CRS dataset.
arXiv Detail & Related papers (2023-07-21T15:28:47Z) - Improving Conversational Recommendation Systems via Counterfactual Data
Simulation [73.4526400381668]
Conversational recommender systems (CRSs) aim to provide recommendation services via natural language conversations.
Existing CRS approaches often suffer from the issue of insufficient training due to the scarcity of training data.
We propose a CounterFactual data simulation approach for CRS, named CFCRS, to alleviate the issue of data scarcity in CRSs.
arXiv Detail & Related papers (2023-06-05T12:48:56Z) - Rethinking the Evaluation for Conversational Recommendation in the Era
of Large Language Models [115.7508325840751]
The recent success of large language models (LLMs) has shown great potential to develop more powerful conversational recommender systems (CRSs)
In this paper, we embark on an investigation into the utilization of ChatGPT for conversational recommendation, revealing the inadequacy of the existing evaluation protocol.
We propose an interactive Evaluation approach based on LLMs named iEvaLM that harnesses LLM-based user simulators.
arXiv Detail & Related papers (2023-05-22T15:12:43Z) - Make The Most of Prior Data: A Solution for Interactive Text
Summarization with Preference Feedback [15.22874706089491]
We introduce a new framework to train summarization models with preference feedback interactively.
By properly leveraging offline data and a novel reward model, we improve the performance regarding ROUGE scores and sample-efficiency.
arXiv Detail & Related papers (2022-04-12T03:56:59Z) - C2-CRS: Coarse-to-Fine Contrastive Learning for Conversational
Recommender System [47.18484863699936]
We propose a novel contrastive learning framework to improve data semantic fusion for Conversational recommender systems.
In our approach, we first extract and represent multi-grained semantic units from different data signals, and then align the associated multi-type semantic units in a coarse-to-fine way.
Experiments on two public CRS datasets have demonstrated the effectiveness of our approach in both recommendation and conversation tasks.
arXiv Detail & Related papers (2022-01-04T11:39:41Z) - Contrastive Self-supervised Sequential Recommendation with Robust
Augmentation [101.25762166231904]
Sequential Recommendationdescribes a set of techniques to model dynamic user behavior in order to predict future interactions in sequential user data.
Old and new issues remain, including data-sparsity and noisy data.
We propose Contrastive Self-Supervised Learning for sequential Recommendation (CoSeRec)
arXiv Detail & Related papers (2021-08-14T07:15:25Z) - S^3-Rec: Self-Supervised Learning for Sequential Recommendation with
Mutual Information Maximization [104.87483578308526]
We propose the model S3-Rec, which stands for Self-Supervised learning for Sequential Recommendation.
For our task, we devise four auxiliary self-supervised objectives to learn the correlations among attribute, item, subsequence, and sequence.
Extensive experiments conducted on six real-world datasets demonstrate the superiority of our proposed method over existing state-of-the-art methods.
arXiv Detail & Related papers (2020-08-18T11:44:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.