Collaborative Retrieval for Large Language Model-based Conversational Recommender Systems
- URL: http://arxiv.org/abs/2502.14137v1
- Date: Wed, 19 Feb 2025 22:47:40 GMT
- Title: Collaborative Retrieval for Large Language Model-based Conversational Recommender Systems
- Authors: Yaochen Zhu, Chao Wan, Harald Steck, Dawen Liang, Yesu Feng, Nathan Kallus, Jundong Li,
- Abstract summary: Conversational recommender systems (CRS) aim to provide personalized recommendations via interactive dialogues with users.
Large language models (LLMs) enhance CRS with their superior understanding of context-aware user preferences.
We propose CRAG, Collaborative Retrieval Augmented Generation for LLM-based CRS.
- Score: 65.75265303064654
- License:
- Abstract: Conversational recommender systems (CRS) aim to provide personalized recommendations via interactive dialogues with users. While large language models (LLMs) enhance CRS with their superior understanding of context-aware user preferences, they typically struggle to leverage behavioral data, which have proven to be important for classical collaborative filtering (CF)-based approaches. For this reason, we propose CRAG, Collaborative Retrieval Augmented Generation for LLM-based CRS. To the best of our knowledge, CRAG is the first approach that combines state-of-the-art LLMs with CF for conversational recommendations. Our experiments on two publicly available movie conversational recommendation datasets, i.e., a refined Reddit dataset (which we name Reddit-v2) as well as the Redial dataset, demonstrate the superior item coverage and recommendation performance of CRAG, compared to several CRS baselines. Moreover, we observe that the improvements are mainly due to better recommendation accuracy on recently released movies. The code and data are available at https://github.com/yaochenzhu/CRAG.
Related papers
- Bridging Conversational and Collaborative Signals for Conversational Recommendation [17.222272483923714]
We introduce Reddit-ML32M, a dataset that links Reddit conversations with interactions on MovieLens 32M.
We propose an LLM-based framework that uses Reddit-ML32M to align LLM-generated recommendations with CF embeddings.
Our approach achieves consistent improvements, including a 12.32% increase in Hit Rate and a 9.9% improvement in NDCG.
arXiv Detail & Related papers (2024-12-09T19:53:13Z) - Beyond Retrieval: Generating Narratives in Conversational Recommender Systems [4.73461454584274]
We introduce a new dataset (REGEN) for natural language generation tasks in conversational recommendations.
We establish benchmarks using well-known generative metrics, and perform an automated evaluation of the new dataset using a rater LLM.
And to the best of our knowledge, represents the first attempt to analyze the capabilities of LLMs in understanding recommender signals and generating rich narratives.
arXiv Detail & Related papers (2024-10-22T07:53:41Z) - Parameter-Efficient Conversational Recommender System as a Language
Processing Task [52.47087212618396]
Conversational recommender systems (CRS) aim to recommend relevant items to users by eliciting user preference through natural language conversation.
Prior work often utilizes external knowledge graphs for items' semantic information, a language model for dialogue generation, and a recommendation module for ranking relevant items.
In this paper, we represent items in natural language and formulate CRS as a natural language processing task.
arXiv Detail & Related papers (2024-01-25T14:07:34Z) - Alleviating the Long-Tail Problem in Conversational Recommender Systems [72.8984755843184]
Conversational recommender systems (CRS) aim to provide the recommendation service via natural language conversations.
Existing CRS datasets suffer from the long-tail issue, ie a large proportion of items are rarely (or even never) mentioned in the conversations.
This paper presents textbfLOT-CRS, a novel framework that focuses on simulating and utilizing a balanced CRS dataset.
arXiv Detail & Related papers (2023-07-21T15:28:47Z) - Conversational Recommendation as Retrieval: A Simple, Strong Baseline [4.737923227003888]
Conversational recommendation systems (CRS) aim to recommend suitable items to users through natural language conversation.
Most CRS approaches do not effectively utilize the signal provided by these conversations.
We propose an alternative information retrieval (IR)-styled approach to the CRS item recommendation task.
arXiv Detail & Related papers (2023-05-23T06:21:31Z) - Rethinking the Evaluation for Conversational Recommendation in the Era
of Large Language Models [115.7508325840751]
The recent success of large language models (LLMs) has shown great potential to develop more powerful conversational recommender systems (CRSs)
In this paper, we embark on an investigation into the utilization of ChatGPT for conversational recommendation, revealing the inadequacy of the existing evaluation protocol.
We propose an interactive Evaluation approach based on LLMs named iEvaLM that harnesses LLM-based user simulators.
arXiv Detail & Related papers (2023-05-22T15:12:43Z) - EGCR: Explanation Generation for Conversational Recommendation [7.496434082286226]
Explanation Generation for Conversational Recommendation (EGCR) based on generating explanations for conversational agents to explain why they make the action.
EGCR incorporates user reviews to enhance the item representation and increase the informativeness of the whole conversation.
We evaluate EGCR on one benchmark conversational recommendation datasets and achieve better performance on both recommendation accuracy and conversation quality than other state-of-the art models.
arXiv Detail & Related papers (2022-08-17T02:30:41Z) - Leveraging Historical Interaction Data for Improving Conversational
Recommender System [105.90963882850265]
We propose a novel pre-training approach to integrate item- and attribute-based preference sequence.
Experiment results on two real-world datasets have demonstrated the effectiveness of our approach.
arXiv Detail & Related papers (2020-08-19T03:43:50Z) - Improving Conversational Recommender Systems via Knowledge Graph based
Semantic Fusion [77.21442487537139]
Conversational recommender systems (CRS) aim to recommend high-quality items to users through interactive conversations.
First, the conversation data itself lacks of sufficient contextual information for accurately understanding users' preference.
Second, there is a semantic gap between natural language expression and item-level user preference.
arXiv Detail & Related papers (2020-07-08T11:14:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.