論文の概要: Face Anti-Spoofing Via Disentangled Representation Learning
- arxiv url: http://arxiv.org/abs/2008.08250v1
- Date: Wed, 19 Aug 2020 03:54:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-27 11:49:39.363768
- Title: Face Anti-Spoofing Via Disentangled Representation Learning
- Title(参考訳): disentangled representation learningによる顔のアンチスプーフィング
- Authors: Ke-Yue Zhang, Taiping Yao, Jian Zhang, Ying Tai, Shouhong Ding, Jilin
Li, Feiyue Huang, Haichuan Song, Lizhuang Ma
- Abstract要約: 顔認識システムのセキュリティには、顔の偽造が不可欠だ。
本稿では,画像から生意気な特徴やコンテンツの特徴を乱す顔のアンチ・スプーフィングの新たな視点を提案する。
- 参考スコア(独自算出の注目度): 90.90512800361742
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Face anti-spoofing is crucial to security of face recognition systems.
Previous approaches focus on developing discriminative models based on the
features extracted from images, which may be still entangled between spoof
patterns and real persons. In this paper, motivated by the disentangled
representation learning, we propose a novel perspective of face anti-spoofing
that disentangles the liveness features and content features from images, and
the liveness features is further used for classification. We also put forward a
Convolutional Neural Network (CNN) architecture with the process of
disentanglement and combination of low-level and high-level supervision to
improve the generalization capabilities. We evaluate our method on public
benchmark datasets and extensive experimental results demonstrate the
effectiveness of our method against the state-of-the-art competitors. Finally,
we further visualize some results to help understand the effect and advantage
of disentanglement.
- Abstract(参考訳): 顔認識システムのセキュリティには顔認識対策が不可欠である。
従来のアプローチでは、画像から抽出された特徴に基づく差別モデルの開発に焦点が当てられていた。
本稿では, 画像から生意気な特徴や内容的特徴を遠ざけ, さらにその生意気な特徴を分類するために利用する顔反偽造の新たな視点を提案する。
また,畳み込み処理を施した畳み込みニューラルネットワーク(convolutional neural network, cnn)アーキテクチャを展開し,一般化能力を向上させるために低レベルと高レベルの組み合わせを行った。
提案手法を公開ベンチマークデータセット上で評価し,提案手法が最先端の競合相手に対して有効であることを示す。
最後に, 絡み合いの効果と利点を理解するために, 結果の可視化を行う。
関連論文リスト
- A visualization method for data domain changes in CNN networks and the optimization method for selecting thresholds in classification tasks [1.1118946307353794]
Face Anti-Spoofing (FAS) は、顔認識技術のセキュリティを維持する上で重要な役割を担っている。
偽造顔生成技術の台頭に伴い、デジタル編集された顔が反偽造に直面する課題がエスカレートしている。
本稿では,データセット上での予測結果を可視化することにより,モデルのトレーニング結果を直感的に反映する可視化手法を提案する。
論文 参考訳(メタデータ) (2024-04-19T03:12:17Z) - Appearance Debiased Gaze Estimation via Stochastic Subject-Wise
Adversarial Learning [33.55397868171977]
外観に基づく視線推定はコンピュータビジョンにおいて注目されており、様々な深層学習技術を用いて顕著な改善が達成されている。
本稿では,被験者の外観を一般化するネットワークを訓練する,SAZE学習という新しい枠組みを提案する。
実験の結果,MPIIGazeデータセットとEyeDiapデータセットの3.89と4.42をそれぞれ達成した。
論文 参考訳(メタデータ) (2024-01-25T00:23:21Z) - Modeling Spoof Noise by De-spoofing Diffusion and its Application in
Face Anti-spoofing [40.82039387208269]
本稿では,拡散モデルを用いてスプーフ画像をデノベートし,真の画像を復元する先駆的な試みを提案する。
これら2つの画像の違いはスプーフノイズと見なされ、顔の反スプーフに対する識別的手がかりとして機能する。
論文 参考訳(メタデータ) (2024-01-16T10:54:37Z) - A Closer Look at Geometric Temporal Dynamics for Face Anti-Spoofing [13.725319422213623]
顔認識システムにはFAS(face anti-spoofing)が不可欠である。
本稿では,通常動作と異常動作を区別するGeometry-Aware Interaction Network (GAIN)を提案する。
提案手法は,標準内部およびクロスデータセット評価における最先端性能を実現する。
論文 参考訳(メタデータ) (2023-06-25T18:59:52Z) - ViCE: Self-Supervised Visual Concept Embeddings as Contextual and Pixel
Appearance Invariant Semantic Representations [77.3590853897664]
本研究は,NLPにおける単語埋め込みの学習方法に着想を得た画像に対して,意味論的にリッチな視覚埋め込みを学習するための自己指導的手法を提案する。
論文 参考訳(メタデータ) (2021-11-24T12:27:30Z) - AGA-GAN: Attribute Guided Attention Generative Adversarial Network with
U-Net for Face Hallucination [15.010153819096056]
本稿では,属性誘導注意(AGA)モジュールを用いた属性誘導注意生成ネットワークを提案する。
AGA-GANとAGA-GAN+U-Netフレームワークは、他の最先端のハロシン化技術よりも優れている。
論文 参考訳(メタデータ) (2021-11-20T13:43:03Z) - Detect and Locate: A Face Anti-Manipulation Approach with Semantic and
Noise-level Supervision [67.73180660609844]
本稿では,画像中の偽造顔を効率的に検出する,概念的にシンプルだが効果的な方法を提案する。
提案手法は,画像に関する意味の高い意味情報を提供するセグメンテーションマップに依存する。
提案モデルでは,最先端検出精度と顕著なローカライゼーション性能を実現する。
論文 参考訳(メタデータ) (2021-07-13T02:59:31Z) - Progressive Spatio-Temporal Bilinear Network with Monte Carlo Dropout
for Landmark-based Facial Expression Recognition with Uncertainty Estimation [93.73198973454944]
提案手法の性能は, 広く使用されている3つのデータセットで評価される。
ビデオベースの最先端の手法に匹敵するが、複雑さははるかに少ない。
論文 参考訳(メタデータ) (2021-06-08T13:40:30Z) - Proactive Pseudo-Intervention: Causally Informed Contrastive Learning
For Interpretable Vision Models [103.64435911083432]
PPI(Proactive Pseudo-Intervention)と呼ばれる新しい対照的な学習戦略を提案する。
PPIは、因果関係のない画像の特徴を保護するために積極的に介入する。
また,重要な画像画素を識別するための,因果的に通知された新たなサリエンスマッピングモジュールを考案し,モデル解釈の容易性を示す。
論文 参考訳(メタデータ) (2020-12-06T20:30:26Z) - Towards Transferable Adversarial Attack against Deep Face Recognition [58.07786010689529]
ディープ畳み込みニューラルネットワーク(DCNN)は敵の例に弱いことが判明した。
転送可能な敵の例は、DCNNの堅牢性を著しく妨げます。
DFANetは畳み込み層で使用されるドロップアウトベースの手法であり,サロゲートモデルの多様性を高めることができる。
クエリなしで4つの商用APIをうまく攻撃できる新しい対向顔ペアを生成します。
論文 参考訳(メタデータ) (2020-04-13T06:44:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。