A neural anisotropic view of underspecification in deep learning
- URL: http://arxiv.org/abs/2104.14372v1
- Date: Thu, 29 Apr 2021 14:31:09 GMT
- Title: A neural anisotropic view of underspecification in deep learning
- Authors: Guillermo Ortiz-Jimenez, Itamar Franco Salazar-Reque, Apostolos Modas,
Seyed-Mohsen Moosavi-Dezfooli, Pascal Frossard
- Abstract summary: We show that the way neural networks handle the underspecification of problems is highly dependent on the data representation.
Our results highlight that understanding the architectural inductive bias in deep learning is fundamental to address the fairness, robustness, and generalization of these systems.
- Score: 60.119023683371736
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The underspecification of most machine learning pipelines means that we
cannot rely solely on validation performance to assess the robustness of deep
learning systems to naturally occurring distribution shifts. Instead, making
sure that a neural network can generalize across a large number of different
situations requires to understand the specific way in which it solves a task.
In this work, we propose to study this problem from a geometric perspective
with the aim to understand two key characteristics of neural network solutions
in underspecified settings: how is the geometry of the learned function related
to the data representation? And, are deep networks always biased towards
simpler solutions, as conjectured in recent literature? We show that the way
neural networks handle the underspecification of these problems is highly
dependent on the data representation, affecting both the geometry and the
complexity of the learned predictors. Our results highlight that understanding
the architectural inductive bias in deep learning is fundamental to address the
fairness, robustness, and generalization of these systems.
Related papers
- Coding schemes in neural networks learning classification tasks [52.22978725954347]
We investigate fully-connected, wide neural networks learning classification tasks.
We show that the networks acquire strong, data-dependent features.
Surprisingly, the nature of the internal representations depends crucially on the neuronal nonlinearity.
arXiv Detail & Related papers (2024-06-24T14:50:05Z) - Riemannian Residual Neural Networks [58.925132597945634]
We show how to extend the residual neural network (ResNet)
ResNets have become ubiquitous in machine learning due to their beneficial learning properties, excellent empirical results, and easy-to-incorporate nature when building varied neural networks.
arXiv Detail & Related papers (2023-10-16T02:12:32Z) - Gaussian Process Surrogate Models for Neural Networks [6.8304779077042515]
In science and engineering, modeling is a methodology used to understand complex systems whose internal processes are opaque.
We construct a class of surrogate models for neural networks using Gaussian processes.
We demonstrate our approach captures existing phenomena related to the spectral bias of neural networks, and then show that our surrogate models can be used to solve practical problems.
arXiv Detail & Related papers (2022-08-11T20:17:02Z) - The Neural Race Reduction: Dynamics of Abstraction in Gated Networks [12.130628846129973]
We introduce the Gated Deep Linear Network framework that schematizes how pathways of information flow impact learning dynamics.
We derive an exact reduction and, for certain cases, exact solutions to the dynamics of learning.
Our work gives rise to general hypotheses relating neural architecture to learning and provides a mathematical approach towards understanding the design of more complex architectures.
arXiv Detail & Related papers (2022-07-21T12:01:03Z) - Rank Diminishing in Deep Neural Networks [71.03777954670323]
Rank of neural networks measures information flowing across layers.
It is an instance of a key structural condition that applies across broad domains of machine learning.
For neural networks, however, the intrinsic mechanism that yields low-rank structures remains vague and unclear.
arXiv Detail & Related papers (2022-06-13T12:03:32Z) - Information Flow in Deep Neural Networks [0.6922389632860545]
There is no comprehensive theoretical understanding of how deep neural networks work or are structured.
Deep networks are often seen as black boxes with unclear interpretations and reliability.
This work aims to apply principles and techniques from information theory to deep learning models to increase our theoretical understanding and design better algorithms.
arXiv Detail & Related papers (2022-02-10T23:32:26Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Malicious Network Traffic Detection via Deep Learning: An Information
Theoretic View [0.0]
We study how homeomorphism affects learned representation of a malware traffic dataset.
Our results suggest that although the details of learned representations and the specific coordinate system defined over the manifold of all parameters differ slightly, the functional approximations are the same.
arXiv Detail & Related papers (2020-09-16T15:37:44Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
We propose a topological perspective to represent a network into a complete graph for analysis.
By assigning learnable parameters to the edges which reflect the magnitude of connections, the learning process can be performed in a differentiable manner.
This learning process is compatible with existing networks and owns adaptability to larger search spaces and different tasks.
arXiv Detail & Related papers (2020-08-19T04:53:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.